LSeg / app.py
jm12138's picture
fix a bug
daa75d5
import cv2
import paddle
import paddlehub as hub
import gradio as gr
module = hub.Module(name="lseg")
def segment(image, labels):
try:
long_size = max(image.shape[:2])
if long_size > 512:
f = 512 / long_size
image = cv2.resize(image, (0, 0), fx=f, fy=f)
results = module.segment(
image=image[..., ::-1],
labels=[item for item in labels.split('\n') if item != '']
)
return [
results['color'][..., ::-1],
results['mix'][..., ::-1],
*[cv2.cvtColor(v, cv2.COLOR_BGRA2RGBA) for v in results['classes'].values()]
]
except:
paddle.disable_static()
raise ValueError
gr.Interface(
title='LSeg: Language-driven Semantic Segmentation',
fn=segment,
inputs=[
gr.Image(),
gr.Textbox(placeholder='other\ncat', lines=5, max_lines=50),
],
outputs=[
gr.Gallery().style(grid=[2, 3], height="auto")
],
article='''## More
* There are more interesting models in [PaddleHub](https://github.com/PaddlePaddle/PaddleHub), you can star [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) to follow.
* Besides, you can use free GPU resourses in [AIStudio](https://aistudio.baidu.com/aistudio/projectdetail/4580391) to enjoy more cases, have fun.
[![](https://user-images.githubusercontent.com/22424850/187849103-074cb6d2-a9b4-49a1-b1f0-fc130049769f.png)](https://github.com/PaddlePaddle/PaddleHub/stargazers)
## References
* Paper: [Language-driven Semantic Segmentation](https://arxiv.org/abs/2201.03546)
* Offical Code: [isl-org/lang-seg](https://github.com/isl-org/lang-seg)
''',
examples=[['cat.jpeg', 'other\ncat']],
cache_examples=True
).launch()