File size: 611 Bytes
5336f13
 
 
 
 
 
 
5bf3268
5336f13
 
b936066
 
5336f13
 
 
 
 
5bf3268
667c03d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr
import cv2
import paddlehub as hub
from PIL import Image
import numpy as np


model = hub.Module(name='MiDaS_Large', use_gpu=False)

def inference(img):
  model.depth_estimation(images=[cv2.imread(img)],visualization=True)
  return './output/0.png'

  
title="MiDaS_Large"
description="MiDaS_Large is a monocular depth estimation model that estimates depth information from input images."

examples=[['lion.jpg']]
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="file"),title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)