File size: 9,149 Bytes
61f1e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce2763
27fdae2
fce2763
27fdae2
61f1e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18c2a30
 
60b2c57
18c2a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f1e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import json
import os
from datetime import datetime

import gradio as gr
import pandas as pd

from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO



custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap');
body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown {
    font-family: 'Vazirmatn', sans-serif !important;
}
.markdown-text {
    font-size: 16px !important;
}
#models-to-add-text {
    font-size: 18px !important;
}
#citation-button span {
    font-size: 16px !important;
}
#citation-button textarea {
    font-size: 16px !important;
}
#citation-button > label > button {
    margin: 6px;
    transform: scale(1.3);
}
#leaderboard-table {
    margin-top: 15px;
    text-align: center;
}
#leaderboard-table,
#leaderboard-table th,
#leaderboard-table td {
    text-align: center;
    vertical-align: middle;
    border-collapse: collapse;
}
#leaderboard-table td:first-child,
#leaderboard-table th:first-child {
    text-align: left;
    max-width: 600px;
}
table > thead {
    white-space: normal;
}
table > thead th,
table > tbody td {
    text-align: center;
    vertical-align: middle;
}
table > tbody td:first-child {
    text-align: left;
    max-width: 600px;
}
#leaderboard-table-lite {
    margin-top: 15px;
}
#search-bar-table-box > div:first-child {
    background: none;
    border: none;
}
#search-bar {
    padding: 0px;
}
.tab-buttons button {
    font-size: 20px;
}
#scale-logo {
    border-style: none !important;
    box-shadow: none;
    display: block;
    margin-left: auto;
    margin-right: auto;
    max-width: 600px;
}
#scale-logo .download {
    display: none;
}
#filter_type {
    border: 0;
    padding-left: 0;
    padding-top: 0;
}
#filter_type label {
    display: flex;
}
#filter_type label > span {
    margin-top: var(--spacing-lg);
    margin-right: 0.5em;
}
#filter_type label > .wrap {
    width: 103px;
}
#filter_type label > .wrap .wrap-inner {  
    padding: 2px;
}
#filter_type label > .wrap .wrap-inner input {
    width: 1px;
}
#filter-columns-type {
    border: 0;
    padding: 0.5;
}
#filter-columns-size {
    border: 0;
    padding: 0.5;
}
#box-filter > .form {
    border: 0;
}
"""


ABOUT_TEXT = f"""
# Persian Text Embedding Benchmark (v1.0.0)

> The Persian Text Embedding Benchmark Leaderboard, developed by **Part DP AI**, provides a comprehensive benchmarking system specifically designed for Persian embedding models. This leaderboard, based on the open-source [MTEB](https://github.com/embeddings-benchmark/mteb), offers a unique platform for evaluating the performance of embedding models on datasets that demand linguistic proficiency in Persian.

> **Note:** This leaderboard is continuously updating its data and models, reflecting the latest developments in Persian embedding models. It is currently in version 1.0.0, serving as the initial benchmark for embedding model evaluation, with plans for future enhancements.
"""


SUBMIT_TEXT = """## Submitting a Model for Evaluation

> To submit your open-source model for evaluation, follow these steps:
> 
> 1. **Ensure your model is on Hugging Face**: Your model must be publicly available on [Hugging Face](https://huggingface.co/).
> 
> 2. **Submit Request**: Send a request with your model's Hugging Face identifier.
> 
> 3. **Manual Queue**: Please note that the evaluation process is currently handled manually. Submissions will be queued and processed as soon as possible.
> 
> 4. **Results**: Once the evaluation is complete, your model’s results will be updated on the leaderboard.
> 
> We appreciate your patience and contributions to the Persian LM ecosystem!
"""


PART_LOGO = """
<img src="https://avatars.githubusercontent.com/u/39557177?v=4" style="width:30%;display:block;margin-left:auto;margin-right:auto"> 
<h1 style="font-size: 28px; margin-bottom: 2px;">Part DP AI</h1>
"""

tasks_and_metrics_table_markdown = """
<div style="text-align: center;">
<p style="font-size: 16px; font-weight: bold;">Table of tasks and corresponding metrics</p>
<table style="margin: 0 auto; border-collapse: collapse; width: 30%; text-align: left; border: 1px solid #ddd; font-size: 14px;">
<thead>
<tr style="background-color: #f2f2f2;">
<th style="padding: 8px; border: 1px solid #ddd; width: 65%;">Task</th>
<th style="padding: 8px; border: 1px solid #ddd; width: 35%;">Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">FarsTail-Pair-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Average precision</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">MIRACL-Reranking</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@10</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Wikipedia-Multilingual-Reranking</td>
<td style="padding: 8px; border: 1px solid #ddd;">MAP</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">NeuCLIR2023-Retrieval</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@20</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">MIRACL-Retrieval</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@10</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Wikipedia-Multilingual-Retrieval</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@10</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Massive-Intent-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Massive-Scenario-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Multilingual-Sentiment-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Persian-Food-Sentiment-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
</tbody>
</table>
</div>
"""


def load_jsonl(input_file):
    data = []
    with open(input_file, 'r') as f:
        for line in f:
            data.append(json.loads(line))
    return data


def jsonl_to_dataframe(input_file):
    data = load_jsonl(input_file)
    return pd.DataFrame(data)


def sort_dataframe_by_column(df, column_name):
    if column_name not in df.columns:
        raise ValueError(f"Column '{column_name}' does not exist in the DataFrame.")
    return df.sort_values(by=column_name, ascending=False).reset_index(drop=True)


def add_average_column_to_df(df,columns_to_average, index=3, average_column_name="Average Accuracy"):
    average_column = df[columns_to_average].mean(axis=1)
    df.insert(index, average_column_name, average_column)
    return df


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def make_clickable_model(model_name):
    link = f"https://huggingface.co/{model_name}"
    return model_hyperlink(link, model_name)


def center_align_markdown(text):
    return f'<div align="center">{text}</div>'


def apply_markdown_format_for_columns(df, model_column_name):
    columns = list(df.columns)
    df[model_column_name] = df[model_column_name].apply(make_clickable_model)
    # for column in columns:
    #     if column != model_column_name:
    #         df[column] = df[column].apply(center_align_markdown)
    return df


def submit(model_name, model_id, contact_email):
    if model_name == "" or model_id == "" or contact_email == "":
        gr.Info("Please fill all the fields")
        return


    try:
        user_name = ""
        if "/" in model_id:
            user_name = model_id.split("/")[0]
            model_path = model_id.split("/")[1]

        eval_entry = {
            "model_name": model_name,
            "model_id": model_id,
            "contact_email": contact_email,
        }

        # Get the current timestamp to add to the filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

        OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
        os.makedirs(OUT_DIR, exist_ok=True)

        # Add the timestamp to the filename
        out_path = f"{OUT_DIR}/{user_name}_{model_path}_{timestamp}.json"

        with open(out_path, "w") as f:
            f.write(json.dumps(eval_entry))

        print("Uploading eval file")
        API.upload_file(
            path_or_fileobj=out_path,
            path_in_repo=out_path.split("eval-queue/")[1],
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model_name} to eval queue",
        )

        gr.Info("Successfully submitted", duration=10)
        # Remove the local file
        os.remove(out_path)
    except Exception as e:
        gr.Error(f"Error submitting the model: {e}")