Spaces:
Running
Running
File size: 9,149 Bytes
61f1e83 fce2763 27fdae2 fce2763 27fdae2 61f1e83 18c2a30 60b2c57 18c2a30 61f1e83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import json
import os
from datetime import datetime
import gradio as gr
import pandas as pd
from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap');
body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown {
font-family: 'Vazirmatn', sans-serif !important;
}
.markdown-text {
font-size: 16px !important;
}
#models-to-add-text {
font-size: 18px !important;
}
#citation-button span {
font-size: 16px !important;
}
#citation-button textarea {
font-size: 16px !important;
}
#citation-button > label > button {
margin: 6px;
transform: scale(1.3);
}
#leaderboard-table {
margin-top: 15px;
text-align: center;
}
#leaderboard-table,
#leaderboard-table th,
#leaderboard-table td {
text-align: center;
vertical-align: middle;
border-collapse: collapse;
}
#leaderboard-table td:first-child,
#leaderboard-table th:first-child {
text-align: left;
max-width: 600px;
}
table > thead {
white-space: normal;
}
table > thead th,
table > tbody td {
text-align: center;
vertical-align: middle;
}
table > tbody td:first-child {
text-align: left;
max-width: 600px;
}
#leaderboard-table-lite {
margin-top: 15px;
}
#search-bar-table-box > div:first-child {
background: none;
border: none;
}
#search-bar {
padding: 0px;
}
.tab-buttons button {
font-size: 20px;
}
#scale-logo {
border-style: none !important;
box-shadow: none;
display: block;
margin-left: auto;
margin-right: auto;
max-width: 600px;
}
#scale-logo .download {
display: none;
}
#filter_type {
border: 0;
padding-left: 0;
padding-top: 0;
}
#filter_type label {
display: flex;
}
#filter_type label > span {
margin-top: var(--spacing-lg);
margin-right: 0.5em;
}
#filter_type label > .wrap {
width: 103px;
}
#filter_type label > .wrap .wrap-inner {
padding: 2px;
}
#filter_type label > .wrap .wrap-inner input {
width: 1px;
}
#filter-columns-type {
border: 0;
padding: 0.5;
}
#filter-columns-size {
border: 0;
padding: 0.5;
}
#box-filter > .form {
border: 0;
}
"""
ABOUT_TEXT = f"""
# Persian Text Embedding Benchmark (v1.0.0)
> The Persian Text Embedding Benchmark Leaderboard, developed by **Part DP AI**, provides a comprehensive benchmarking system specifically designed for Persian embedding models. This leaderboard, based on the open-source [MTEB](https://github.com/embeddings-benchmark/mteb), offers a unique platform for evaluating the performance of embedding models on datasets that demand linguistic proficiency in Persian.
> **Note:** This leaderboard is continuously updating its data and models, reflecting the latest developments in Persian embedding models. It is currently in version 1.0.0, serving as the initial benchmark for embedding model evaluation, with plans for future enhancements.
"""
SUBMIT_TEXT = """## Submitting a Model for Evaluation
> To submit your open-source model for evaluation, follow these steps:
>
> 1. **Ensure your model is on Hugging Face**: Your model must be publicly available on [Hugging Face](https://huggingface.co/).
>
> 2. **Submit Request**: Send a request with your model's Hugging Face identifier.
>
> 3. **Manual Queue**: Please note that the evaluation process is currently handled manually. Submissions will be queued and processed as soon as possible.
>
> 4. **Results**: Once the evaluation is complete, your model’s results will be updated on the leaderboard.
>
> We appreciate your patience and contributions to the Persian LM ecosystem!
"""
PART_LOGO = """
<img src="https://avatars.githubusercontent.com/u/39557177?v=4" style="width:30%;display:block;margin-left:auto;margin-right:auto">
<h1 style="font-size: 28px; margin-bottom: 2px;">Part DP AI</h1>
"""
tasks_and_metrics_table_markdown = """
<div style="text-align: center;">
<p style="font-size: 16px; font-weight: bold;">Table of tasks and corresponding metrics</p>
<table style="margin: 0 auto; border-collapse: collapse; width: 30%; text-align: left; border: 1px solid #ddd; font-size: 14px;">
<thead>
<tr style="background-color: #f2f2f2;">
<th style="padding: 8px; border: 1px solid #ddd; width: 65%;">Task</th>
<th style="padding: 8px; border: 1px solid #ddd; width: 35%;">Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">FarsTail-Pair-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Average precision</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">MIRACL-Reranking</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@10</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Wikipedia-Multilingual-Reranking</td>
<td style="padding: 8px; border: 1px solid #ddd;">MAP</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">NeuCLIR2023-Retrieval</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@20</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">MIRACL-Retrieval</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@10</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Wikipedia-Multilingual-Retrieval</td>
<td style="padding: 8px; border: 1px solid #ddd;">NDCG@10</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Massive-Intent-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Massive-Scenario-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Multilingual-Sentiment-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd; word-wrap: break-word;">Persian-Food-Sentiment-Classification</td>
<td style="padding: 8px; border: 1px solid #ddd;">Accuracy</td>
</tr>
</tbody>
</table>
</div>
"""
def load_jsonl(input_file):
data = []
with open(input_file, 'r') as f:
for line in f:
data.append(json.loads(line))
return data
def jsonl_to_dataframe(input_file):
data = load_jsonl(input_file)
return pd.DataFrame(data)
def sort_dataframe_by_column(df, column_name):
if column_name not in df.columns:
raise ValueError(f"Column '{column_name}' does not exist in the DataFrame.")
return df.sort_values(by=column_name, ascending=False).reset_index(drop=True)
def add_average_column_to_df(df,columns_to_average, index=3, average_column_name="Average Accuracy"):
average_column = df[columns_to_average].mean(axis=1)
df.insert(index, average_column_name, average_column)
return df
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def make_clickable_model(model_name):
link = f"https://huggingface.co/{model_name}"
return model_hyperlink(link, model_name)
def center_align_markdown(text):
return f'<div align="center">{text}</div>'
def apply_markdown_format_for_columns(df, model_column_name):
columns = list(df.columns)
df[model_column_name] = df[model_column_name].apply(make_clickable_model)
# for column in columns:
# if column != model_column_name:
# df[column] = df[column].apply(center_align_markdown)
return df
def submit(model_name, model_id, contact_email):
if model_name == "" or model_id == "" or contact_email == "":
gr.Info("Please fill all the fields")
return
try:
user_name = ""
if "/" in model_id:
user_name = model_id.split("/")[0]
model_path = model_id.split("/")[1]
eval_entry = {
"model_name": model_name,
"model_id": model_id,
"contact_email": contact_email,
}
# Get the current timestamp to add to the filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
# Add the timestamp to the filename
out_path = f"{OUT_DIR}/{user_name}_{model_path}_{timestamp}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
gr.Info("Successfully submitted", duration=10)
# Remove the local file
os.remove(out_path)
except Exception as e:
gr.Error(f"Error submitting the model: {e}") |