tabedini commited on
Commit
e0fa3ac
·
verified ·
1 Parent(s): 57a8976

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +77 -0
  2. leaderboard_data.jsonl +14 -0
  3. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
3
+ from pathlib import Path
4
+
5
+ from utils import ABOUT_TEXT, SUBMIT_TEXT, custom_css, jsonl_to_dataframe, add_average_column_to_df, apply_markdown_format_for_columns, submit, PART_LOGO, sort_dataframe_by_column
6
+
7
+
8
+
9
+ abs_path = Path(__file__).parent
10
+
11
+ # Any pandas-compatible data
12
+ leaderboard_df = jsonl_to_dataframe(str(abs_path / "leaderboard_data.jsonl"))
13
+
14
+ average_column_name = "Average Accuracy"
15
+
16
+ columns_to_average = ["FarsTail-Pair-Classification",
17
+ "MIRACL-Reranking",
18
+ "Wikipedia-Multilingual-Reranking",
19
+ "NeuCLIR2023-Retrieval",
20
+ "MIRACL-Retrieval",
21
+ "Wikipedia-Multilingual-Retrieval",
22
+ "Massive-Intent-Classification",
23
+ "Massive-Scenario-Classification",
24
+ "Multilingual-Sentiment-Classification",
25
+ "Persian-Food-Sentiment-Classification",
26
+ ]
27
+
28
+ all_columns = ["Model", average_column_name, "Precision", "#Params (M)", "Embedding Dimension", "Context Size"] + columns_to_average
29
+
30
+ leaderboard_df = add_average_column_to_df(leaderboard_df, columns_to_average, index=3, average_column_name=average_column_name)
31
+
32
+ leaderboard_df = apply_markdown_format_for_columns(df=leaderboard_df, model_column_name="Model")
33
+ leaderboard_df = sort_dataframe_by_column(leaderboard_df, column_name=average_column_name)
34
+
35
+ columns_data_type = ["markdown" for i in range(len(leaderboard_df.columns))]
36
+
37
+ NUM_MODELS=len(leaderboard_df)
38
+
39
+ with gr.Blocks(css=custom_css) as demo:
40
+ gr.Markdown("""
41
+ # Persian Text Embedding Benchmark
42
+ """)
43
+
44
+ gr.Markdown(f"""
45
+ - **Total Models**: {NUM_MODELS}
46
+ """)
47
+
48
+ with gr.Tab("🎖️ Leaderboard"):
49
+ Leaderboard(
50
+ value=leaderboard_df,
51
+ datatype=columns_data_type,
52
+ select_columns=SelectColumns(
53
+ default_selection=all_columns,
54
+ cant_deselect=["Model"],
55
+ label="Select Columns to Show",
56
+ ),
57
+ search_columns=["model_name_for_query"],
58
+ hide_columns=["model_name_for_query",],
59
+ filter_columns=["Precision", "#Params (M)"],
60
+ )
61
+ with gr.TabItem("📝 About"):
62
+ gr.Markdown(ABOUT_TEXT)
63
+
64
+ with gr.Tab("✉️ Submit"):
65
+ gr.Markdown(SUBMIT_TEXT)
66
+ model_name = gr.Textbox(label="Model name")
67
+ model_id = gr.Textbox(label="username/space e.g PartAI/Tooka-SBERT")
68
+ contact_email = gr.Textbox(label="Contact E-Mail")
69
+ submit_btn = gr.Button("Submit")
70
+
71
+ submit_btn.click(submit, inputs=[model_name, model_id, contact_email], outputs=[])
72
+
73
+ gr.Markdown("""
74
+ Please find more information about Part DP AI on [partdp.ai](https://partdp.ai)""")
75
+
76
+ if __name__ == "__main__":
77
+ demo.launch()
leaderboard_data.jsonl ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"Model": "jinaai/jina-embeddings-v3", "Precision": "bfloat16", "#Params (M)": 572, "Embedding Dimension": 1024, "Context Size": 8192, "FarsTail-Pair-Classification": 71.88, "MIRACL-Reranking": 42.82 , "Wikipedia-Multilingual-Reranking": 79.58, "NeuCLIR2023-Retrieval": 51.36, "MIRACL-Retrieval": 55.15, "Wikipedia-Multilingual-Retrieval": 89.04, "Massive-Intent-Classification": 72.60, "Massive-Scenario-Classification": 81.88, "Multilingual-Sentiment-Classification": 81.48, "Persian-Food-Sentiment-Classification": 81.11, "Hub License": "cc-by-nc-4.0", "Model sha": "main", "model_name_for_query": "jinaai/jina-embeddings-v3"}
2
+ {"Model": "intfloat/multilingual-e5-large", "Precision": "float32", "#Params (M)": 560, "Embedding Dimension": 1024, "Context Size": 512, "FarsTail-Pair-Classification": 72.55, "MIRACL-Reranking": 59.36, "Wikipedia-Multilingual-Reranking": 89.32, "NeuCLIR2023-Retrieval": 46.67, "MIRACL-Retrieval": 59.01, "Wikipedia-Multilingual-Retrieval": 90.40, "Massive-Intent-Classification": 65.31, "Massive-Scenario-Classification": 68.76, "Multilingual-Sentiment-Classification": 77.47, "Persian-Food-Sentiment-Classification": 77.16, "Hub License": "mit", "Model sha": "main", "model_name_for_query": "intfloat/multilingual-e5-large"}
3
+ {"Model": "intfloat/multilingual-e5-base", "Precision": "float32", "#Params (M)": 270, "Embedding Dimension": 768, "Context Size": 512, "FarsTail-Pair-Classification": 70.76, "MIRACL-Reranking": 57.36, "Wikipedia-Multilingual-Reranking": 86.78, "NeuCLIR2023-Retrieval": 46.10, "MIRACL-Retrieval": 57.48, "Wikipedia-Multilingual-Retrieval": 88.11, "Massive-Intent-Classification": 61.53, "Massive-Scenario-Classification": 65.22, "Multilingual-Sentiment-Classification": 76.34, "Persian-Food-Sentiment-Classification": 75.74, "Hub License": "mit", "Model sha": "main", "model_name_for_query": "intfloat/multilingual-e5-base"}
4
+ {"Model": "Alibaba-NLP/gte-multilingual-base", "Precision": "float16", "#Params (M)": 305, "Embedding Dimension": 768, "Context Size": 8192, "FarsTail-Pair-Classification": 72.65, "MIRACL-Reranking": 55.05, "Wikipedia-Multilingual-Reranking": 84.38, "NeuCLIR2023-Retrieval": 50.94, "MIRACL-Retrieval": 53.89, "Wikipedia-Multilingual-Retrieval": 84.94, "Massive-Intent-Classification": 62.29, "Massive-Scenario-Classification": 67.88, "Multilingual-Sentiment-Classification": 71.84, "Persian-Food-Sentiment-Classification": 70.90, "Hub License": "apache-2.0", "Model sha": "main", "model_name_for_query": "Alibaba-NLP/gte-multilingual-base"}
5
+ {"Model": "PartAI/Tooka-SBERT", "Precision": "float32", "#Params (M)": 353, "Embedding Dimension": 1024, "Context Size": 512, "FarsTail-Pair-Classification": 81.52, "MIRACL-Reranking": 35.87 , "Wikipedia-Multilingual-Reranking": 80.71, "NeuCLIR2023-Retrieval": 36.48, "MIRACL-Retrieval": 21.32, "Wikipedia-Multilingual-Retrieval": 79.02, "Massive-Intent-Classification": 64.39, "Massive-Scenario-Classification": 67.59, "Multilingual-Sentiment-Classification": 77.17, "Persian-Food-Sentiment-Classification": 77.01, "Hub License": "apache-2.0", "Model sha": "main", "model_name_for_query": "PartAI/Tooka-SBERT"}
6
+ {"Model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "Precision": "float32", "#Params (M)": 118, "Embedding Dimension": 384, "Context Size": 512, "FarsTail-Pair-Classification": 64.84, "MIRACL-Reranking": 30.83, "Wikipedia-Multilingual-Reranking": 80.80, "NeuCLIR2023-Retrieval": 26.35, "MIRACL-Retrieval": 13.33, "Wikipedia-Multilingual-Retrieval": 62.15, "Massive-Intent-Classification": 61.03, "Massive-Scenario-Classification": 65.89, "Multilingual-Sentiment-Classification": 73.91, "Persian-Food-Sentiment-Classification": 73.46, "Hub License": "apache-2.0", "Model sha": "main", "model_name_for_query": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"}
7
+ {"Model": "sentence-transformers/LaBSE", "Precision": "float32", "#Params (M)": 471, "Embedding Dimension": 768, "Context Size": 512, "FarsTail-Pair-Classification": 62.93, "MIRACL-Reranking": 29.05, "Wikipedia-Multilingual-Reranking": 82.42, "NeuCLIR2023-Retrieval": 21.52, "MIRACL-Retrieval": 10.53, "Wikipedia-Multilingual-Retrieval": 67.06, "Massive-Intent-Classification": 62.33, "Massive-Scenario-Classification": 67.43, "Multilingual-Sentiment-Classification": 72.44, "Persian-Food-Sentiment-Classification": 72.09, "Hub License": "apache-2.0", "Model sha": "main", "model_name_for_query": "sentence-transformers/LaBSE"}
8
+ {"Model": "m3hrdadfi/bert-zwnj-wnli-mean-tokens", "Precision": "float32", "#Params (M)": 118, "Embedding Dimension": 768, "Context Size": 512, "FarsTail-Pair-Classification": 56.09, "MIRACL-Reranking": 18.17, "Wikipedia-Multilingual-Reranking": 73.28, "NeuCLIR2023-Retrieval": 5.03, "MIRACL-Retrieval": 4.35, "Wikipedia-Multilingual-Retrieval": 41.29, "Massive-Intent-Classification": 52.76, "Massive-Scenario-Classification": 58.24, "Multilingual-Sentiment-Classification": 59.64, "Persian-Food-Sentiment-Classification": 59.38, "Hub License": "None", "Model sha": "main", "model_name_for_query": "m3hrdadfi/bert-zwnj-wnli-mean-tokens"}
9
+ {"Model": "m3hrdadfi/roberta-zwnj-wnli-mean-tokens", "Precision": "float32", "#Params (M)": 118, "Embedding Dimension": 768, "Context Size": 512, "FarsTail-Pair-Classification": 54.98, "MIRACL-Reranking": 17.38, "Wikipedia-Multilingual-Reranking": 72.11, "NeuCLIR2023-Retrieval": 5.27, "MIRACL-Retrieval": 4.34, "Wikipedia-Multilingual-Retrieval": 37.34, "Massive-Intent-Classification": 51.41, "Massive-Scenario-Classification": 59.53, "Multilingual-Sentiment-Classification": 57.65, "Persian-Food-Sentiment-Classification": 57.11, "Hub License": "None", "Model sha": "main", "model_name_for_query": "m3hrdadfi/roberta-zwnj-wnli-mean-tokens"}
10
+ {"Model": "myrkur/sentence-transformer-parsbert-fa", "Precision": "float32", "#Params (M)": 163, "Embedding Dimension": 768, "Context Size": 512, "FarsTail-Pair-Classification": 58.92, "MIRACL-Reranking": 18.34, "Wikipedia-Multilingual-Reranking": 61.47, "NeuCLIR2023-Retrieval": 6.61, "MIRACL-Retrieval": 1.95, "Wikipedia-Multilingual-Retrieval": 35.63, "Massive-Intent-Classification": 44.13, "Massive-Scenario-Classification": 51.83, "Multilingual-Sentiment-Classification": 55.75, "Persian-Food-Sentiment-Classification": 55.97, "Hub License": "apache-2.0", "Model sha": "main", "model_name_for_query": "myrkur/sentence-transformer-parsbert-fa"}
11
+ {"Model": "WhereIsAI/UAE-Large-V1", "Precision": "float32", "#Params (M)": 335, "Embedding Dimension": 1024, "Context Size": 512, "FarsTail-Pair-Classification": 61.85, "MIRACL-Reranking": 20.09, "Wikipedia-Multilingual-Reranking": 66.48, "NeuCLIR2023-Retrieval": 3.13, "MIRACL-Retrieval": 3.51, "Wikipedia-Multilingual-Retrieval": 23.44, "Massive-Intent-Classification": 38.98, "Massive-Scenario-Classification": 38.03, "Multilingual-Sentiment-Classification": 61.34, "Persian-Food-Sentiment-Classification": 60.96, "Hub License": "mit", "Model sha": "main", "model_name_for_query": "WhereIsAI/UAE-Large-V1"}
12
+ {"Model": "intfloat/e5-large-v2", "Precision": "float32", "#Params (M)": 335, "Embedding Dimension": 1024, "Context Size": 512, "FarsTail-Pair-Classification": 59.25, "MIRACL-Reranking": 12.44, "Wikipedia-Multilingual-Reranking": 63.50, "NeuCLIR2023-Retrieval": 2.05, "MIRACL-Retrieval": 0.16, "Wikipedia-Multilingual-Retrieval": 18.31, "Massive-Intent-Classification": 35.75, "Massive-Scenario-Classification": 38.06, "Multilingual-Sentiment-Classification": 57.79, "Persian-Food-Sentiment-Classification": 57.18, "Hub License": "mit", "Model sha": "main", "model_name_for_query": "intfloat/e5-large-v2"}
13
+ {"Model": "intfloat/e5-base-v2", "Precision": "float32", "#Params (M)": 109, "Embedding Dimension": 768, "Context Size": 512, "FarsTail-Pair-Classification": 57.23, "MIRACL-Reranking": 9.28, "Wikipedia-Multilingual-Reranking": 60.94, "NeuCLIR2023-Retrieval": 1.89, "MIRACL-Retrieval": 0.26, "Wikipedia-Multilingual-Retrieval": 19.42, "Massive-Intent-Classification": 29.84, "Massive-Scenario-Classification": 33.21, "Multilingual-Sentiment-Classification": 58.28, "Persian-Food-Sentiment-Classification": 58.04, "Hub License": "mit", "Model sha": "main", "model_name_for_query": "intfloat/e5-base-v2"}
14
+ {"Model": "thenlper/gte-large", "Precision": "float16", "#Params (M)": 335, "Embedding Dimension": 1024, "Context Size": 512, "FarsTail-Pair-Classification": 60.02, "MIRACL-Reranking": 10.99, "Wikipedia-Multilingual-Reranking": 63.30, "NeuCLIR2023-Retrieval": 2.47, "MIRACL-Retrieval": 0.41, "Wikipedia-Multilingual-Retrieval": 11.75, "Massive-Intent-Classification": 24.54, "Massive-Scenario-Classification": 30.03, "Multilingual-Sentiment-Classification": 61.80, "Persian-Food-Sentiment-Classification": 61.21, "Hub License": "mit", "Model sha": "main", "model_name_for_query": "thenlper/gte-large"}
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ gradio_leaderboard