File size: 3,657 Bytes
d69879c
 
e123fec
d69879c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af08fb2
 
 
 
 
 
d69879c
 
 
 
 
 
 
 
 
af08fb2
 
 
 
 
d69879c
af08fb2
d69879c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e123fec
 
 
 
 
 
 
 
d69879c
 
 
 
 
 
 
 
cb05ba2
 
d69879c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
title: FacePoke
emoji: πŸ™‚β€β†”οΈπŸ‘ˆ
colorFrom: yellow
colorTo: red
sdk: docker
pinned: true
license: mit
header: mini
app_file: app.py
app_port: 8080
---

# FacePoke

## Table of Contents

- [Introduction](#introduction)
- [Acknowledgements](#acknowledgements)
- [Installation](#installation)
  - [Local Setup](#local-setup)
  - [Docker Deployment](#docker-deployment)
- [Development](#development)
- [Contributing](#contributing)
- [License](#license)

## Introduction

A real-time head transformation app.

For best performance please run the app from your own machine (local or in the cloud).

**Repository**: [GitHub - jbilcke-hf/FacePoke](https://github.com/jbilcke-hf/FacePoke)

You can try the demo but it is a shared space, latency may be high if there are multiple users or if you live far from the datacenter hosting the Hugging Face Space.

**Live Demo**: [FacePoke on Hugging Face Spaces](https://huggingface.co/spaces/jbilcke-hf/FacePoke)

## Acknowledgements

This project is based on LivePortrait: https://arxiv.org/abs/2407.03168

It uses the face transformation routines from https://github.com/PowerHouseMan/ComfyUI-AdvancedLivePortrait

## Installation

### Before you install

FacePoke has only been tested in a Linux environment, using `Python 3.10` and `CUDA 12.4` (so a NVIDIA GPU).

Contributions are welcome to help supporting other platforms!

### Local Setup

1. Clone the repository:
   ```bash
   git clone https://github.com/jbilcke-hf/FacePoke.git
   cd FacePoke
   ```

2. Install Python dependencies:

   Using a virtual environment (Python venv) is strongly recommended.

   FacePoke has been tested with `Python 3.10`.

   ```bash
   pip3 install --upgrade -r requirements.txt
   ```

3. Install frontend dependencies:
   ```bash
   cd client
   bun install
   ```

4. Build the frontend:
   ```bash
   bun build ./src/index.tsx --outdir ../public/
   ```

5. Start the backend server:
   ```bash
   python app.py
   ```

6. Open `http://localhost:8080` in your web browser.

### Docker Deployment

1. Build the Docker image:
   ```bash
   docker build -t facepoke .
   ```

2. Run the container:
   ```bash
   docker run -p 8080:8080 facepoke
   ```

3. To deploy to Hugging Face Spaces:
   - Fork the repository on GitHub.
   - Create a new Space on Hugging Face.
   - Connect your GitHub repository to the Space.
   - Configure the Space to use the Docker runtime.

## Development

The project structure is organized as follows:

- `app.py`: Main backend server handling WebSocket connections.
- `engine.py`: Core logic.
- `loader.py`: Initializes and loads AI models.
- `client/`: Frontend React application.
  - `src/`: TypeScript source files.
  - `public/`: Static assets and built files.

### Increasing the framerate

I am testing various things to increase the framerate.

One project is to only transmit the modified head, instead of the whole image.

Another one is to automatically adapt to the server and network speed.

## Contributing

Contributions to FacePoke are welcome! Please read our [Contributing Guidelines](CONTRIBUTING.md) for details on how to submit pull requests, report issues, or request features.

## License

FacePoke is released under the MIT License. See the [LICENSE](LICENSE) file for details.

Please note that while the code of LivePortrait and Insightface are open-source with "no limitation for both academic and commercial usage", the model weights trained from Insightface data are available for [https://github.com/deepinsight/insightface?tab=readme-ov-file#license](non-commercial research purposes only).

---

Developed with ❀️ by Julian Bilcke at Hugging Face