Spaces:
Sleeping
Sleeping
File size: 12,437 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import copy
import itertools
import logging
import numpy as np
import pickle
import random
from typing import Callable, Union
import torch
import torch.utils.data as data
from torch.utils.data.sampler import Sampler
from detectron2.utils.serialize import PicklableWrapper
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"]
logger = logging.getLogger(__name__)
# copied from: https://docs.python.org/3/library/itertools.html#recipes
def _roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
num_active = len(iterables)
nexts = itertools.cycle(iter(it).__next__ for it in iterables)
while num_active:
try:
for next in nexts:
yield next()
except StopIteration:
# Remove the iterator we just exhausted from the cycle.
num_active -= 1
nexts = itertools.cycle(itertools.islice(nexts, num_active))
def _shard_iterator_dataloader_worker(iterable, chunk_size=1):
# Shard the iterable if we're currently inside pytorch dataloader worker.
worker_info = data.get_worker_info()
if worker_info is None or worker_info.num_workers == 1:
# do nothing
yield from iterable
else:
# worker0: 0, 1, ..., chunk_size-1, num_workers*chunk_size, num_workers*chunk_size+1, ...
# worker1: chunk_size, chunk_size+1, ...
# worker2: 2*chunk_size, 2*chunk_size+1, ...
# ...
yield from _roundrobin(
*[
itertools.islice(
iterable,
worker_info.id * chunk_size + chunk_i,
None,
worker_info.num_workers * chunk_size,
)
for chunk_i in range(chunk_size)
]
)
class _MapIterableDataset(data.IterableDataset):
"""
Map a function over elements in an IterableDataset.
Similar to pytorch's MapIterDataPipe, but support filtering when map_func
returns None.
This class is not public-facing. Will be called by `MapDataset`.
"""
def __init__(self, dataset, map_func):
self._dataset = dataset
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
def __len__(self):
return len(self._dataset)
def __iter__(self):
for x in map(self._map_func, self._dataset):
if x is not None:
yield x
class MapDataset(data.Dataset):
"""
Map a function over the elements in a dataset.
"""
def __init__(self, dataset, map_func):
"""
Args:
dataset: a dataset where map function is applied. Can be either
map-style or iterable dataset. When given an iterable dataset,
the returned object will also be an iterable dataset.
map_func: a callable which maps the element in dataset. map_func can
return None to skip the data (e.g. in case of errors).
How None is handled depends on the style of `dataset`.
If `dataset` is map-style, it randomly tries other elements.
If `dataset` is iterable, it skips the data and tries the next.
"""
self._dataset = dataset
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
self._rng = random.Random(42)
self._fallback_candidates = set(range(len(dataset)))
def __new__(cls, dataset, map_func):
is_iterable = isinstance(dataset, data.IterableDataset)
if is_iterable:
return _MapIterableDataset(dataset, map_func)
else:
return super().__new__(cls)
def __getnewargs__(self):
return self._dataset, self._map_func
def __len__(self):
return len(self._dataset)
def __getitem__(self, idx):
retry_count = 0
cur_idx = int(idx)
while True:
data = self._map_func(self._dataset[cur_idx])
if data is not None:
self._fallback_candidates.add(cur_idx)
return data
# _map_func fails for this idx, use a random new index from the pool
retry_count += 1
self._fallback_candidates.discard(cur_idx)
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0]
if retry_count >= 3:
logger = logging.getLogger(__name__)
logger.warning(
"Failed to apply `_map_func` for idx: {}, retry count: {}".format(
idx, retry_count
)
)
class _TorchSerializedList:
"""
A list-like object whose items are serialized and stored in a torch tensor. When
launching a process that uses TorchSerializedList with "fork" start method,
the subprocess can read the same buffer without triggering copy-on-access. When
launching a process that uses TorchSerializedList with "spawn/forkserver" start
method, the list will be pickled by a special ForkingPickler registered by PyTorch
that moves data to shared memory. In both cases, this allows parent and child
processes to share RAM for the list data, hence avoids the issue in
https://github.com/pytorch/pytorch/issues/13246.
See also https://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/
on how it works.
"""
def __init__(self, lst: list):
self._lst = lst
def _serialize(data):
buffer = pickle.dumps(data, protocol=-1)
return np.frombuffer(buffer, dtype=np.uint8)
logger.info(
"Serializing {} elements to byte tensors and concatenating them all ...".format(
len(self._lst)
)
)
self._lst = [_serialize(x) for x in self._lst]
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
self._addr = torch.from_numpy(np.cumsum(self._addr))
self._lst = torch.from_numpy(np.concatenate(self._lst))
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024**2))
def __len__(self):
return len(self._addr)
def __getitem__(self, idx):
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
end_addr = self._addr[idx].item()
bytes = memoryview(self._lst[start_addr:end_addr].numpy())
# @lint-ignore PYTHONPICKLEISBAD
return pickle.loads(bytes)
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = _TorchSerializedList
@contextlib.contextmanager
def set_default_dataset_from_list_serialize_method(new):
"""
Context manager for using custom serialize function when creating DatasetFromList
"""
global _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD
orig = _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = new
yield
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = orig
class DatasetFromList(data.Dataset):
"""
Wrap a list to a torch Dataset. It produces elements of the list as data.
"""
def __init__(
self,
lst: list,
copy: bool = True,
serialize: Union[bool, Callable] = True,
):
"""
Args:
lst (list): a list which contains elements to produce.
copy (bool): whether to deepcopy the element when producing it,
so that the result can be modified in place without affecting the
source in the list.
serialize (bool or callable): whether to serialize the stroage to other
backend. If `True`, the default serialize method will be used, if given
a callable, the callable will be used as serialize method.
"""
self._lst = lst
self._copy = copy
if not isinstance(serialize, (bool, Callable)):
raise TypeError(f"Unsupported type for argument `serailzie`: {serialize}")
self._serialize = serialize is not False
if self._serialize:
serialize_method = (
serialize
if isinstance(serialize, Callable)
else _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD
)
logger.info(f"Serializing the dataset using: {serialize_method}")
self._lst = serialize_method(self._lst)
def __len__(self):
return len(self._lst)
def __getitem__(self, idx):
if self._copy and not self._serialize:
return copy.deepcopy(self._lst[idx])
else:
return self._lst[idx]
class ToIterableDataset(data.IterableDataset):
"""
Convert an old indices-based (also called map-style) dataset
to an iterable-style dataset.
"""
def __init__(
self,
dataset: data.Dataset,
sampler: Sampler,
shard_sampler: bool = True,
shard_chunk_size: int = 1,
):
"""
Args:
dataset: an old-style dataset with ``__getitem__``
sampler: a cheap iterable that produces indices to be applied on ``dataset``.
shard_sampler: whether to shard the sampler based on the current pytorch data loader
worker id. When an IterableDataset is forked by pytorch's DataLoader into multiple
workers, it is responsible for sharding its data based on worker id so that workers
don't produce identical data.
Most samplers (like our TrainingSampler) do not shard based on dataloader worker id
and this argument should be set to True. But certain samplers may be already
sharded, in that case this argument should be set to False.
shard_chunk_size: when sharding the sampler, each worker will
"""
assert not isinstance(dataset, data.IterableDataset), dataset
assert isinstance(sampler, Sampler), sampler
self.dataset = dataset
self.sampler = sampler
self.shard_sampler = shard_sampler
self.shard_chunk_size = shard_chunk_size
def __iter__(self):
if not self.shard_sampler:
sampler = self.sampler
else:
# With map-style dataset, `DataLoader(dataset, sampler)` runs the
# sampler in main process only. But `DataLoader(ToIterableDataset(dataset, sampler))`
# will run sampler in every of the N worker. So we should only keep 1/N of the ids on
# each worker. The assumption is that sampler is cheap to iterate so it's fine to
# discard ids in workers.
sampler = _shard_iterator_dataloader_worker(self.sampler, self.shard_chunk_size)
for idx in sampler:
yield self.dataset[idx]
def __len__(self):
return len(self.sampler)
class AspectRatioGroupedDataset(data.IterableDataset):
"""
Batch data that have similar aspect ratio together.
In this implementation, images whose aspect ratio < (or >) 1 will
be batched together.
This improves training speed because the images then need less padding
to form a batch.
It assumes the underlying dataset produces dicts with "width" and "height" keys.
It will then produce a list of original dicts with length = batch_size,
all with similar aspect ratios.
"""
def __init__(self, dataset, batch_size):
"""
Args:
dataset: an iterable. Each element must be a dict with keys
"width" and "height", which will be used to batch data.
batch_size (int):
"""
self.dataset = dataset
self.batch_size = batch_size
self._buckets = [[] for _ in range(2)]
# Hard-coded two aspect ratio groups: w > h and w < h.
# Can add support for more aspect ratio groups, but doesn't seem useful
def __iter__(self):
for d in self.dataset:
w, h = d["width"], d["height"]
bucket_id = 0 if w > h else 1
bucket = self._buckets[bucket_id]
bucket.append(d)
if len(bucket) == self.batch_size:
data = bucket[:]
# Clear bucket first, because code after yield is not
# guaranteed to execute
del bucket[:]
yield data
|