Spaces:
Sleeping
Sleeping
File size: 11,526 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import sys
import tempfile
from contextlib import ExitStack, contextmanager
from copy import deepcopy
from unittest import mock
import torch
from torch import nn
# need some explicit imports due to https://github.com/pytorch/pytorch/issues/38964
import detectron2 # noqa F401
from detectron2.structures import Boxes, Instances
from detectron2.utils.env import _import_file
_counter = 0
def _clear_jit_cache():
from torch.jit._recursive import concrete_type_store
from torch.jit._state import _jit_caching_layer
concrete_type_store.type_store.clear() # for modules
_jit_caching_layer.clear() # for free functions
def _add_instances_conversion_methods(newInstances):
"""
Add from_instances methods to the scripted Instances class.
"""
cls_name = newInstances.__name__
@torch.jit.unused
def from_instances(instances: Instances):
"""
Create scripted Instances from original Instances
"""
fields = instances.get_fields()
image_size = instances.image_size
ret = newInstances(image_size)
for name, val in fields.items():
assert hasattr(ret, f"_{name}"), f"No attribute named {name} in {cls_name}"
setattr(ret, name, deepcopy(val))
return ret
newInstances.from_instances = from_instances
@contextmanager
def patch_instances(fields):
"""
A contextmanager, under which the Instances class in detectron2 is replaced
by a statically-typed scriptable class, defined by `fields`.
See more in `scripting_with_instances`.
"""
with tempfile.TemporaryDirectory(prefix="detectron2") as dir, tempfile.NamedTemporaryFile(
mode="w", encoding="utf-8", suffix=".py", dir=dir, delete=False
) as f:
try:
# Objects that use Instances should not reuse previously-compiled
# results in cache, because `Instances` could be a new class each time.
_clear_jit_cache()
cls_name, s = _gen_instance_module(fields)
f.write(s)
f.flush()
f.close()
module = _import(f.name)
new_instances = getattr(module, cls_name)
_ = torch.jit.script(new_instances)
# let torchscript think Instances was scripted already
Instances.__torch_script_class__ = True
# let torchscript find new_instances when looking for the jit type of Instances
Instances._jit_override_qualname = torch._jit_internal._qualified_name(new_instances)
_add_instances_conversion_methods(new_instances)
yield new_instances
finally:
try:
del Instances.__torch_script_class__
del Instances._jit_override_qualname
except AttributeError:
pass
sys.modules.pop(module.__name__)
def _gen_instance_class(fields):
"""
Args:
fields (dict[name: type])
"""
class _FieldType:
def __init__(self, name, type_):
assert isinstance(name, str), f"Field name must be str, got {name}"
self.name = name
self.type_ = type_
self.annotation = f"{type_.__module__}.{type_.__name__}"
fields = [_FieldType(k, v) for k, v in fields.items()]
def indent(level, s):
return " " * 4 * level + s
lines = []
global _counter
_counter += 1
cls_name = "ScriptedInstances{}".format(_counter)
field_names = tuple(x.name for x in fields)
extra_args = ", ".join([f"{f.name}: Optional[{f.annotation}] = None" for f in fields])
lines.append(
f"""
class {cls_name}:
def __init__(self, image_size: Tuple[int, int], {extra_args}):
self.image_size = image_size
self._field_names = {field_names}
"""
)
for f in fields:
lines.append(
indent(2, f"self._{f.name} = torch.jit.annotate(Optional[{f.annotation}], {f.name})")
)
for f in fields:
lines.append(
f"""
@property
def {f.name}(self) -> {f.annotation}:
# has to use a local for type refinement
# https://pytorch.org/docs/stable/jit_language_reference.html#optional-type-refinement
t = self._{f.name}
assert t is not None, "{f.name} is None and cannot be accessed!"
return t
@{f.name}.setter
def {f.name}(self, value: {f.annotation}) -> None:
self._{f.name} = value
"""
)
# support method `__len__`
lines.append(
"""
def __len__(self) -> int:
"""
)
for f in fields:
lines.append(
f"""
t = self._{f.name}
if t is not None:
return len(t)
"""
)
lines.append(
"""
raise NotImplementedError("Empty Instances does not support __len__!")
"""
)
# support method `has`
lines.append(
"""
def has(self, name: str) -> bool:
"""
)
for f in fields:
lines.append(
f"""
if name == "{f.name}":
return self._{f.name} is not None
"""
)
lines.append(
"""
return False
"""
)
# support method `to`
none_args = ", None" * len(fields)
lines.append(
f"""
def to(self, device: torch.device) -> "{cls_name}":
ret = {cls_name}(self.image_size{none_args})
"""
)
for f in fields:
if hasattr(f.type_, "to"):
lines.append(
f"""
t = self._{f.name}
if t is not None:
ret._{f.name} = t.to(device)
"""
)
else:
# For now, ignore fields that cannot be moved to devices.
# Maybe can support other tensor-like classes (e.g. __torch_function__)
pass
lines.append(
"""
return ret
"""
)
# support method `getitem`
none_args = ", None" * len(fields)
lines.append(
f"""
def __getitem__(self, item) -> "{cls_name}":
ret = {cls_name}(self.image_size{none_args})
"""
)
for f in fields:
lines.append(
f"""
t = self._{f.name}
if t is not None:
ret._{f.name} = t[item]
"""
)
lines.append(
"""
return ret
"""
)
# support method `cat`
# this version does not contain checks that all instances have same size and fields
none_args = ", None" * len(fields)
lines.append(
f"""
def cat(self, instances: List["{cls_name}"]) -> "{cls_name}":
ret = {cls_name}(self.image_size{none_args})
"""
)
for f in fields:
lines.append(
f"""
t = self._{f.name}
if t is not None:
values: List[{f.annotation}] = [x.{f.name} for x in instances]
if torch.jit.isinstance(t, torch.Tensor):
ret._{f.name} = torch.cat(values, dim=0)
else:
ret._{f.name} = t.cat(values)
"""
)
lines.append(
"""
return ret"""
)
# support method `get_fields()`
lines.append(
"""
def get_fields(self) -> Dict[str, Tensor]:
ret = {}
"""
)
for f in fields:
if f.type_ == Boxes:
stmt = "t.tensor"
elif f.type_ == torch.Tensor:
stmt = "t"
else:
stmt = f'assert False, "unsupported type {str(f.type_)}"'
lines.append(
f"""
t = self._{f.name}
if t is not None:
ret["{f.name}"] = {stmt}
"""
)
lines.append(
"""
return ret"""
)
return cls_name, os.linesep.join(lines)
def _gen_instance_module(fields):
# TODO: find a more automatic way to enable import of other classes
s = """
from copy import deepcopy
import torch
from torch import Tensor
import typing
from typing import *
import detectron2
from detectron2.structures import Boxes, Instances
"""
cls_name, cls_def = _gen_instance_class(fields)
s += cls_def
return cls_name, s
def _import(path):
return _import_file(
"{}{}".format(sys.modules[__name__].__name__, _counter), path, make_importable=True
)
@contextmanager
def patch_builtin_len(modules=()):
"""
Patch the builtin len() function of a few detectron2 modules
to use __len__ instead, because __len__ does not convert values to
integers and therefore is friendly to tracing.
Args:
modules (list[stsr]): names of extra modules to patch len(), in
addition to those in detectron2.
"""
def _new_len(obj):
return obj.__len__()
with ExitStack() as stack:
MODULES = [
"detectron2.modeling.roi_heads.fast_rcnn",
"detectron2.modeling.roi_heads.mask_head",
"detectron2.modeling.roi_heads.keypoint_head",
] + list(modules)
ctxs = [stack.enter_context(mock.patch(mod + ".len")) for mod in MODULES]
for m in ctxs:
m.side_effect = _new_len
yield
def patch_nonscriptable_classes():
"""
Apply patches on a few nonscriptable detectron2 classes.
Should not have side-effects on eager usage.
"""
# __prepare_scriptable__ can also be added to models for easier maintenance.
# But it complicates the clean model code.
from detectron2.modeling.backbone import ResNet, FPN
# Due to https://github.com/pytorch/pytorch/issues/36061,
# we change backbone to use ModuleList for scripting.
# (note: this changes param names in state_dict)
def prepare_resnet(self):
ret = deepcopy(self)
ret.stages = nn.ModuleList(ret.stages)
for k in self.stage_names:
delattr(ret, k)
return ret
ResNet.__prepare_scriptable__ = prepare_resnet
def prepare_fpn(self):
ret = deepcopy(self)
ret.lateral_convs = nn.ModuleList(ret.lateral_convs)
ret.output_convs = nn.ModuleList(ret.output_convs)
for name, _ in self.named_children():
if name.startswith("fpn_"):
delattr(ret, name)
return ret
FPN.__prepare_scriptable__ = prepare_fpn
# Annotate some attributes to be constants for the purpose of scripting,
# even though they are not constants in eager mode.
from detectron2.modeling.roi_heads import StandardROIHeads
if hasattr(StandardROIHeads, "__annotations__"):
# copy first to avoid editing annotations of base class
StandardROIHeads.__annotations__ = deepcopy(StandardROIHeads.__annotations__)
StandardROIHeads.__annotations__["mask_on"] = torch.jit.Final[bool]
StandardROIHeads.__annotations__["keypoint_on"] = torch.jit.Final[bool]
# These patches are not supposed to have side-effects.
patch_nonscriptable_classes()
@contextmanager
def freeze_training_mode(model):
"""
A context manager that annotates the "training" attribute of every submodule
to constant, so that the training codepath in these modules can be
meta-compiled away. Upon exiting, the annotations are reverted.
"""
classes = {type(x) for x in model.modules()}
# __constants__ is the old way to annotate constants and not compatible
# with __annotations__ .
classes = {x for x in classes if not hasattr(x, "__constants__")}
for cls in classes:
cls.__annotations__["training"] = torch.jit.Final[bool]
yield
for cls in classes:
cls.__annotations__["training"] = bool
|