Spaces:
Sleeping
Sleeping
File size: 19,024 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import List, Tuple
import torch
from detectron2.layers.rotated_boxes import pairwise_iou_rotated
from .boxes import Boxes
class RotatedBoxes(Boxes):
"""
This structure stores a list of rotated boxes as a Nx5 torch.Tensor.
It supports some common methods about boxes
(`area`, `clip`, `nonempty`, etc),
and also behaves like a Tensor
(support indexing, `to(device)`, `.device`, and iteration over all boxes)
"""
def __init__(self, tensor: torch.Tensor):
"""
Args:
tensor (Tensor[float]): a Nx5 matrix. Each row is
(x_center, y_center, width, height, angle),
in which angle is represented in degrees.
While there's no strict range restriction for it,
the recommended principal range is between [-180, 180) degrees.
Assume we have a horizontal box B = (x_center, y_center, width, height),
where width is along the x-axis and height is along the y-axis.
The rotated box B_rot (x_center, y_center, width, height, angle)
can be seen as:
1. When angle == 0:
B_rot == B
2. When angle > 0:
B_rot is obtained by rotating B w.r.t its center by :math:`|angle|` degrees CCW;
3. When angle < 0:
B_rot is obtained by rotating B w.r.t its center by :math:`|angle|` degrees CW.
Mathematically, since the right-handed coordinate system for image space
is (y, x), where y is top->down and x is left->right, the 4 vertices of the
rotated rectangle :math:`(yr_i, xr_i)` (i = 1, 2, 3, 4) can be obtained from
the vertices of the horizontal rectangle :math:`(y_i, x_i)` (i = 1, 2, 3, 4)
in the following way (:math:`\\theta = angle*\\pi/180` is the angle in radians,
:math:`(y_c, x_c)` is the center of the rectangle):
.. math::
yr_i = \\cos(\\theta) (y_i - y_c) - \\sin(\\theta) (x_i - x_c) + y_c,
xr_i = \\sin(\\theta) (y_i - y_c) + \\cos(\\theta) (x_i - x_c) + x_c,
which is the standard rigid-body rotation transformation.
Intuitively, the angle is
(1) the rotation angle from y-axis in image space
to the height vector (top->down in the box's local coordinate system)
of the box in CCW, and
(2) the rotation angle from x-axis in image space
to the width vector (left->right in the box's local coordinate system)
of the box in CCW.
More intuitively, consider the following horizontal box ABCD represented
in (x1, y1, x2, y2): (3, 2, 7, 4),
covering the [3, 7] x [2, 4] region of the continuous coordinate system
which looks like this:
.. code:: none
O--------> x
|
| A---B
| | |
| D---C
|
v y
Note that each capital letter represents one 0-dimensional geometric point
instead of a 'square pixel' here.
In the example above, using (x, y) to represent a point we have:
.. math::
O = (0, 0), A = (3, 2), B = (7, 2), C = (7, 4), D = (3, 4)
We name vector AB = vector DC as the width vector in box's local coordinate system, and
vector AD = vector BC as the height vector in box's local coordinate system. Initially,
when angle = 0 degree, they're aligned with the positive directions of x-axis and y-axis
in the image space, respectively.
For better illustration, we denote the center of the box as E,
.. code:: none
O--------> x
|
| A---B
| | E |
| D---C
|
v y
where the center E = ((3+7)/2, (2+4)/2) = (5, 3).
Also,
.. math::
width = |AB| = |CD| = 7 - 3 = 4,
height = |AD| = |BC| = 4 - 2 = 2.
Therefore, the corresponding representation for the same shape in rotated box in
(x_center, y_center, width, height, angle) format is:
(5, 3, 4, 2, 0),
Now, let's consider (5, 3, 4, 2, 90), which is rotated by 90 degrees
CCW (counter-clockwise) by definition. It looks like this:
.. code:: none
O--------> x
| B-C
| | |
| |E|
| | |
| A-D
v y
The center E is still located at the same point (5, 3), while the vertices
ABCD are rotated by 90 degrees CCW with regard to E:
A = (4, 5), B = (4, 1), C = (6, 1), D = (6, 5)
Here, 90 degrees can be seen as the CCW angle to rotate from y-axis to
vector AD or vector BC (the top->down height vector in box's local coordinate system),
or the CCW angle to rotate from x-axis to vector AB or vector DC (the left->right
width vector in box's local coordinate system).
.. math::
width = |AB| = |CD| = 5 - 1 = 4,
height = |AD| = |BC| = 6 - 4 = 2.
Next, how about (5, 3, 4, 2, -90), which is rotated by 90 degrees CW (clockwise)
by definition? It looks like this:
.. code:: none
O--------> x
| D-A
| | |
| |E|
| | |
| C-B
v y
The center E is still located at the same point (5, 3), while the vertices
ABCD are rotated by 90 degrees CW with regard to E:
A = (6, 1), B = (6, 5), C = (4, 5), D = (4, 1)
.. math::
width = |AB| = |CD| = 5 - 1 = 4,
height = |AD| = |BC| = 6 - 4 = 2.
This covers exactly the same region as (5, 3, 4, 2, 90) does, and their IoU
will be 1. However, these two will generate different RoI Pooling results and
should not be treated as an identical box.
On the other hand, it's easy to see that (X, Y, W, H, A) is identical to
(X, Y, W, H, A+360N), for any integer N. For example (5, 3, 4, 2, 270) would be
identical to (5, 3, 4, 2, -90), because rotating the shape 270 degrees CCW is
equivalent to rotating the same shape 90 degrees CW.
We could rotate further to get (5, 3, 4, 2, 180), or (5, 3, 4, 2, -180):
.. code:: none
O--------> x
|
| C---D
| | E |
| B---A
|
v y
.. math::
A = (7, 4), B = (3, 4), C = (3, 2), D = (7, 2),
width = |AB| = |CD| = 7 - 3 = 4,
height = |AD| = |BC| = 4 - 2 = 2.
Finally, this is a very inaccurate (heavily quantized) illustration of
how (5, 3, 4, 2, 60) looks like in case anyone wonders:
.. code:: none
O--------> x
| B\
| / C
| /E /
| A /
| `D
v y
It's still a rectangle with center of (5, 3), width of 4 and height of 2,
but its angle (and thus orientation) is somewhere between
(5, 3, 4, 2, 0) and (5, 3, 4, 2, 90).
"""
device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu")
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
if tensor.numel() == 0:
# Use reshape, so we don't end up creating a new tensor that does not depend on
# the inputs (and consequently confuses jit)
tensor = tensor.reshape((0, 5)).to(dtype=torch.float32, device=device)
assert tensor.dim() == 2 and tensor.size(-1) == 5, tensor.size()
self.tensor = tensor
def clone(self) -> "RotatedBoxes":
"""
Clone the RotatedBoxes.
Returns:
RotatedBoxes
"""
return RotatedBoxes(self.tensor.clone())
def to(self, device: torch.device):
# Boxes are assumed float32 and does not support to(dtype)
return RotatedBoxes(self.tensor.to(device=device))
def area(self) -> torch.Tensor:
"""
Computes the area of all the boxes.
Returns:
torch.Tensor: a vector with areas of each box.
"""
box = self.tensor
area = box[:, 2] * box[:, 3]
return area
# Avoid in-place operations so that we can torchscript; NOTE: this creates a new tensor
def normalize_angles(self) -> None:
"""
Restrict angles to the range of [-180, 180) degrees
"""
angle_tensor = (self.tensor[:, 4] + 180.0) % 360.0 - 180.0
self.tensor = torch.cat((self.tensor[:, :4], angle_tensor[:, None]), dim=1)
def clip(self, box_size: Tuple[int, int], clip_angle_threshold: float = 1.0) -> None:
"""
Clip (in place) the boxes by limiting x coordinates to the range [0, width]
and y coordinates to the range [0, height].
For RRPN:
Only clip boxes that are almost horizontal with a tolerance of
clip_angle_threshold to maintain backward compatibility.
Rotated boxes beyond this threshold are not clipped for two reasons:
1. There are potentially multiple ways to clip a rotated box to make it
fit within the image.
2. It's tricky to make the entire rectangular box fit within the image
and still be able to not leave out pixels of interest.
Therefore we rely on ops like RoIAlignRotated to safely handle this.
Args:
box_size (height, width): The clipping box's size.
clip_angle_threshold:
Iff. abs(normalized(angle)) <= clip_angle_threshold (in degrees),
we do the clipping as horizontal boxes.
"""
h, w = box_size
# normalize angles to be within (-180, 180] degrees
self.normalize_angles()
idx = torch.where(torch.abs(self.tensor[:, 4]) <= clip_angle_threshold)[0]
# convert to (x1, y1, x2, y2)
x1 = self.tensor[idx, 0] - self.tensor[idx, 2] / 2.0
y1 = self.tensor[idx, 1] - self.tensor[idx, 3] / 2.0
x2 = self.tensor[idx, 0] + self.tensor[idx, 2] / 2.0
y2 = self.tensor[idx, 1] + self.tensor[idx, 3] / 2.0
# clip
x1.clamp_(min=0, max=w)
y1.clamp_(min=0, max=h)
x2.clamp_(min=0, max=w)
y2.clamp_(min=0, max=h)
# convert back to (xc, yc, w, h)
self.tensor[idx, 0] = (x1 + x2) / 2.0
self.tensor[idx, 1] = (y1 + y2) / 2.0
# make sure widths and heights do not increase due to numerical errors
self.tensor[idx, 2] = torch.min(self.tensor[idx, 2], x2 - x1)
self.tensor[idx, 3] = torch.min(self.tensor[idx, 3], y2 - y1)
def nonempty(self, threshold: float = 0.0) -> torch.Tensor:
"""
Find boxes that are non-empty.
A box is considered empty, if either of its side is no larger than threshold.
Returns:
Tensor: a binary vector which represents
whether each box is empty (False) or non-empty (True).
"""
box = self.tensor
widths = box[:, 2]
heights = box[:, 3]
keep = (widths > threshold) & (heights > threshold)
return keep
def __getitem__(self, item) -> "RotatedBoxes":
"""
Returns:
RotatedBoxes: Create a new :class:`RotatedBoxes` by indexing.
The following usage are allowed:
1. `new_boxes = boxes[3]`: return a `RotatedBoxes` which contains only one box.
2. `new_boxes = boxes[2:10]`: return a slice of boxes.
3. `new_boxes = boxes[vector]`, where vector is a torch.ByteTensor
with `length = len(boxes)`. Nonzero elements in the vector will be selected.
Note that the returned RotatedBoxes might share storage with this RotatedBoxes,
subject to Pytorch's indexing semantics.
"""
if isinstance(item, int):
return RotatedBoxes(self.tensor[item].view(1, -1))
b = self.tensor[item]
assert b.dim() == 2, "Indexing on RotatedBoxes with {} failed to return a matrix!".format(
item
)
return RotatedBoxes(b)
def __len__(self) -> int:
return self.tensor.shape[0]
def __repr__(self) -> str:
return "RotatedBoxes(" + str(self.tensor) + ")"
def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor:
"""
Args:
box_size (height, width): Size of the reference box covering
[0, width] x [0, height]
boundary_threshold (int): Boxes that extend beyond the reference box
boundary by more than boundary_threshold are considered "outside".
For RRPN, it might not be necessary to call this function since it's common
for rotated box to extend to outside of the image boundaries
(the clip function only clips the near-horizontal boxes)
Returns:
a binary vector, indicating whether each box is inside the reference box.
"""
height, width = box_size
cnt_x = self.tensor[..., 0]
cnt_y = self.tensor[..., 1]
half_w = self.tensor[..., 2] / 2.0
half_h = self.tensor[..., 3] / 2.0
a = self.tensor[..., 4]
c = torch.abs(torch.cos(a * math.pi / 180.0))
s = torch.abs(torch.sin(a * math.pi / 180.0))
# This basically computes the horizontal bounding rectangle of the rotated box
max_rect_dx = c * half_w + s * half_h
max_rect_dy = c * half_h + s * half_w
inds_inside = (
(cnt_x - max_rect_dx >= -boundary_threshold)
& (cnt_y - max_rect_dy >= -boundary_threshold)
& (cnt_x + max_rect_dx < width + boundary_threshold)
& (cnt_y + max_rect_dy < height + boundary_threshold)
)
return inds_inside
def get_centers(self) -> torch.Tensor:
"""
Returns:
The box centers in a Nx2 array of (x, y).
"""
return self.tensor[:, :2]
def scale(self, scale_x: float, scale_y: float) -> None:
"""
Scale the rotated box with horizontal and vertical scaling factors
Note: when scale_factor_x != scale_factor_y,
the rotated box does not preserve the rectangular shape when the angle
is not a multiple of 90 degrees under resize transformation.
Instead, the shape is a parallelogram (that has skew)
Here we make an approximation by fitting a rotated rectangle to the parallelogram.
"""
self.tensor[:, 0] *= scale_x
self.tensor[:, 1] *= scale_y
theta = self.tensor[:, 4] * math.pi / 180.0
c = torch.cos(theta)
s = torch.sin(theta)
# In image space, y is top->down and x is left->right
# Consider the local coordintate system for the rotated box,
# where the box center is located at (0, 0), and the four vertices ABCD are
# A(-w / 2, -h / 2), B(w / 2, -h / 2), C(w / 2, h / 2), D(-w / 2, h / 2)
# the midpoint of the left edge AD of the rotated box E is:
# E = (A+D)/2 = (-w / 2, 0)
# the midpoint of the top edge AB of the rotated box F is:
# F(0, -h / 2)
# To get the old coordinates in the global system, apply the rotation transformation
# (Note: the right-handed coordinate system for image space is yOx):
# (old_x, old_y) = (s * y + c * x, c * y - s * x)
# E(old) = (s * 0 + c * (-w/2), c * 0 - s * (-w/2)) = (-c * w / 2, s * w / 2)
# F(old) = (s * (-h / 2) + c * 0, c * (-h / 2) - s * 0) = (-s * h / 2, -c * h / 2)
# After applying the scaling factor (sfx, sfy):
# E(new) = (-sfx * c * w / 2, sfy * s * w / 2)
# F(new) = (-sfx * s * h / 2, -sfy * c * h / 2)
# The new width after scaling tranformation becomes:
# w(new) = |E(new) - O| * 2
# = sqrt[(sfx * c * w / 2)^2 + (sfy * s * w / 2)^2] * 2
# = sqrt[(sfx * c)^2 + (sfy * s)^2] * w
# i.e., scale_factor_w = sqrt[(sfx * c)^2 + (sfy * s)^2]
#
# For example,
# when angle = 0 or 180, |c| = 1, s = 0, scale_factor_w == scale_factor_x;
# when |angle| = 90, c = 0, |s| = 1, scale_factor_w == scale_factor_y
self.tensor[:, 2] *= torch.sqrt((scale_x * c) ** 2 + (scale_y * s) ** 2)
# h(new) = |F(new) - O| * 2
# = sqrt[(sfx * s * h / 2)^2 + (sfy * c * h / 2)^2] * 2
# = sqrt[(sfx * s)^2 + (sfy * c)^2] * h
# i.e., scale_factor_h = sqrt[(sfx * s)^2 + (sfy * c)^2]
#
# For example,
# when angle = 0 or 180, |c| = 1, s = 0, scale_factor_h == scale_factor_y;
# when |angle| = 90, c = 0, |s| = 1, scale_factor_h == scale_factor_x
self.tensor[:, 3] *= torch.sqrt((scale_x * s) ** 2 + (scale_y * c) ** 2)
# The angle is the rotation angle from y-axis in image space to the height
# vector (top->down in the box's local coordinate system) of the box in CCW.
#
# angle(new) = angle_yOx(O - F(new))
# = angle_yOx( (sfx * s * h / 2, sfy * c * h / 2) )
# = atan2(sfx * s * h / 2, sfy * c * h / 2)
# = atan2(sfx * s, sfy * c)
#
# For example,
# when sfx == sfy, angle(new) == atan2(s, c) == angle(old)
self.tensor[:, 4] = torch.atan2(scale_x * s, scale_y * c) * 180 / math.pi
@classmethod
def cat(cls, boxes_list: List["RotatedBoxes"]) -> "RotatedBoxes":
"""
Concatenates a list of RotatedBoxes into a single RotatedBoxes
Arguments:
boxes_list (list[RotatedBoxes])
Returns:
RotatedBoxes: the concatenated RotatedBoxes
"""
assert isinstance(boxes_list, (list, tuple))
if len(boxes_list) == 0:
return cls(torch.empty(0))
assert all([isinstance(box, RotatedBoxes) for box in boxes_list])
# use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input
cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0))
return cat_boxes
@property
def device(self) -> torch.device:
return self.tensor.device
@torch.jit.unused
def __iter__(self):
"""
Yield a box as a Tensor of shape (5,) at a time.
"""
yield from self.tensor
def pairwise_iou(boxes1: RotatedBoxes, boxes2: RotatedBoxes) -> None:
"""
Given two lists of rotated boxes of size N and M,
compute the IoU (intersection over union)
between **all** N x M pairs of boxes.
The box order must be (x_center, y_center, width, height, angle).
Args:
boxes1, boxes2 (RotatedBoxes):
two `RotatedBoxes`. Contains N & M rotated boxes, respectively.
Returns:
Tensor: IoU, sized [N,M].
"""
return pairwise_iou_rotated(boxes1.tensor, boxes2.tensor)
|