File size: 29,803 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# Copyright (c) Facebook, Inc. and its affiliates.

import itertools
import logging
import numpy as np
from collections import UserDict, defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Collection, Dict, Iterable, List, Optional, Sequence, Tuple
import torch
from torch.utils.data.dataset import Dataset

from detectron2.config import CfgNode
from detectron2.data.build import build_detection_test_loader as d2_build_detection_test_loader
from detectron2.data.build import build_detection_train_loader as d2_build_detection_train_loader
from detectron2.data.build import (
    load_proposals_into_dataset,
    print_instances_class_histogram,
    trivial_batch_collator,
    worker_init_reset_seed,
)
from detectron2.data.catalog import DatasetCatalog, Metadata, MetadataCatalog
from detectron2.data.samplers import TrainingSampler
from detectron2.utils.comm import get_world_size

from densepose.config import get_bootstrap_dataset_config
from densepose.modeling import build_densepose_embedder

from .combined_loader import CombinedDataLoader, Loader
from .dataset_mapper import DatasetMapper
from .datasets.coco import DENSEPOSE_CSE_KEYS_WITHOUT_MASK, DENSEPOSE_IUV_KEYS_WITHOUT_MASK
from .datasets.dataset_type import DatasetType
from .inference_based_loader import InferenceBasedLoader, ScoreBasedFilter
from .samplers import (
    DensePoseConfidenceBasedSampler,
    DensePoseCSEConfidenceBasedSampler,
    DensePoseCSEUniformSampler,
    DensePoseUniformSampler,
    MaskFromDensePoseSampler,
    PredictionToGroundTruthSampler,
)
from .transform import ImageResizeTransform
from .utils import get_category_to_class_mapping, get_class_to_mesh_name_mapping
from .video import (
    FirstKFramesSelector,
    FrameSelectionStrategy,
    LastKFramesSelector,
    RandomKFramesSelector,
    VideoKeyframeDataset,
    video_list_from_file,
)

__all__ = ["build_detection_train_loader", "build_detection_test_loader"]


Instance = Dict[str, Any]
InstancePredicate = Callable[[Instance], bool]


def _compute_num_images_per_worker(cfg: CfgNode) -> int:
    num_workers = get_world_size()
    images_per_batch = cfg.SOLVER.IMS_PER_BATCH
    assert (
        images_per_batch % num_workers == 0
    ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
        images_per_batch, num_workers
    )
    assert (
        images_per_batch >= num_workers
    ), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
        images_per_batch, num_workers
    )
    images_per_worker = images_per_batch // num_workers
    return images_per_worker


def _map_category_id_to_contiguous_id(dataset_name: str, dataset_dicts: Iterable[Instance]) -> None:
    meta = MetadataCatalog.get(dataset_name)
    for dataset_dict in dataset_dicts:
        for ann in dataset_dict["annotations"]:
            ann["category_id"] = meta.thing_dataset_id_to_contiguous_id[ann["category_id"]]


@dataclass
class _DatasetCategory:
    """
    Class representing category data in a dataset:
     - id: category ID, as specified in the dataset annotations file
     - name: category name, as specified in the dataset annotations file
     - mapped_id: category ID after applying category maps (DATASETS.CATEGORY_MAPS config option)
     - mapped_name: category name after applying category maps
     - dataset_name: dataset in which the category is defined

    For example, when training models in a class-agnostic manner, one could take LVIS 1.0
    dataset and map the animal categories to the same category as human data from COCO:
     id = 225
     name = "cat"
     mapped_id = 1
     mapped_name = "person"
     dataset_name = "lvis_v1_animals_dp_train"
    """

    id: int
    name: str
    mapped_id: int
    mapped_name: str
    dataset_name: str


_MergedCategoriesT = Dict[int, List[_DatasetCategory]]


def _add_category_id_to_contiguous_id_maps_to_metadata(
    merged_categories: _MergedCategoriesT,
) -> None:
    merged_categories_per_dataset = {}
    for contiguous_cat_id, cat_id in enumerate(sorted(merged_categories.keys())):
        for cat in merged_categories[cat_id]:
            if cat.dataset_name not in merged_categories_per_dataset:
                merged_categories_per_dataset[cat.dataset_name] = defaultdict(list)
            merged_categories_per_dataset[cat.dataset_name][cat_id].append(
                (
                    contiguous_cat_id,
                    cat,
                )
            )

    logger = logging.getLogger(__name__)
    for dataset_name, merged_categories in merged_categories_per_dataset.items():
        meta = MetadataCatalog.get(dataset_name)
        if not hasattr(meta, "thing_classes"):
            meta.thing_classes = []
            meta.thing_dataset_id_to_contiguous_id = {}
            meta.thing_dataset_id_to_merged_id = {}
        else:
            meta.thing_classes.clear()
            meta.thing_dataset_id_to_contiguous_id.clear()
            meta.thing_dataset_id_to_merged_id.clear()
        logger.info(f"Dataset {dataset_name}: category ID to contiguous ID mapping:")
        for _cat_id, categories in sorted(merged_categories.items()):
            added_to_thing_classes = False
            for contiguous_cat_id, cat in categories:
                if not added_to_thing_classes:
                    meta.thing_classes.append(cat.mapped_name)
                    added_to_thing_classes = True
                meta.thing_dataset_id_to_contiguous_id[cat.id] = contiguous_cat_id
                meta.thing_dataset_id_to_merged_id[cat.id] = cat.mapped_id
                logger.info(f"{cat.id} ({cat.name}) -> {contiguous_cat_id}")


def _maybe_create_general_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
    def has_annotations(instance: Instance) -> bool:
        return "annotations" in instance

    def has_only_crowd_anotations(instance: Instance) -> bool:
        for ann in instance["annotations"]:
            if ann.get("is_crowd", 0) == 0:
                return False
        return True

    def general_keep_instance_predicate(instance: Instance) -> bool:
        return has_annotations(instance) and not has_only_crowd_anotations(instance)

    if not cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS:
        return None
    return general_keep_instance_predicate


def _maybe_create_keypoints_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:

    min_num_keypoints = cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE

    def has_sufficient_num_keypoints(instance: Instance) -> bool:
        num_kpts = sum(
            (np.array(ann["keypoints"][2::3]) > 0).sum()
            for ann in instance["annotations"]
            if "keypoints" in ann
        )
        return num_kpts >= min_num_keypoints

    if cfg.MODEL.KEYPOINT_ON and (min_num_keypoints > 0):
        return has_sufficient_num_keypoints
    return None


def _maybe_create_mask_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
    if not cfg.MODEL.MASK_ON:
        return None

    def has_mask_annotations(instance: Instance) -> bool:
        return any("segmentation" in ann for ann in instance["annotations"])

    return has_mask_annotations


def _maybe_create_densepose_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
    if not cfg.MODEL.DENSEPOSE_ON:
        return None

    use_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS

    def has_densepose_annotations(instance: Instance) -> bool:
        for ann in instance["annotations"]:
            if all(key in ann for key in DENSEPOSE_IUV_KEYS_WITHOUT_MASK) or all(
                key in ann for key in DENSEPOSE_CSE_KEYS_WITHOUT_MASK
            ):
                return True
            if use_masks and "segmentation" in ann:
                return True
        return False

    return has_densepose_annotations


def _maybe_create_specific_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
    specific_predicate_creators = [
        _maybe_create_keypoints_keep_instance_predicate,
        _maybe_create_mask_keep_instance_predicate,
        _maybe_create_densepose_keep_instance_predicate,
    ]
    predicates = [creator(cfg) for creator in specific_predicate_creators]
    predicates = [p for p in predicates if p is not None]
    if not predicates:
        return None

    def combined_predicate(instance: Instance) -> bool:
        return any(p(instance) for p in predicates)

    return combined_predicate


def _get_train_keep_instance_predicate(cfg: CfgNode):
    general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg)
    combined_specific_keep_predicate = _maybe_create_specific_keep_instance_predicate(cfg)

    def combined_general_specific_keep_predicate(instance: Instance) -> bool:
        return general_keep_predicate(instance) and combined_specific_keep_predicate(instance)

    if (general_keep_predicate is None) and (combined_specific_keep_predicate is None):
        return None
    if general_keep_predicate is None:
        return combined_specific_keep_predicate
    if combined_specific_keep_predicate is None:
        return general_keep_predicate
    return combined_general_specific_keep_predicate


def _get_test_keep_instance_predicate(cfg: CfgNode):
    general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg)
    return general_keep_predicate


def _maybe_filter_and_map_categories(
    dataset_name: str, dataset_dicts: List[Instance]
) -> List[Instance]:
    meta = MetadataCatalog.get(dataset_name)
    category_id_map = meta.thing_dataset_id_to_contiguous_id
    filtered_dataset_dicts = []
    for dataset_dict in dataset_dicts:
        anns = []
        for ann in dataset_dict["annotations"]:
            cat_id = ann["category_id"]
            if cat_id not in category_id_map:
                continue
            ann["category_id"] = category_id_map[cat_id]
            anns.append(ann)
        dataset_dict["annotations"] = anns
        filtered_dataset_dicts.append(dataset_dict)
    return filtered_dataset_dicts


def _add_category_whitelists_to_metadata(cfg: CfgNode) -> None:
    for dataset_name, whitelisted_cat_ids in cfg.DATASETS.WHITELISTED_CATEGORIES.items():
        meta = MetadataCatalog.get(dataset_name)
        meta.whitelisted_categories = whitelisted_cat_ids
        logger = logging.getLogger(__name__)
        logger.info(
            "Whitelisted categories for dataset {}: {}".format(
                dataset_name, meta.whitelisted_categories
            )
        )


def _add_category_maps_to_metadata(cfg: CfgNode) -> None:
    for dataset_name, category_map in cfg.DATASETS.CATEGORY_MAPS.items():
        category_map = {
            int(cat_id_src): int(cat_id_dst) for cat_id_src, cat_id_dst in category_map.items()
        }
        meta = MetadataCatalog.get(dataset_name)
        meta.category_map = category_map
        logger = logging.getLogger(__name__)
        logger.info("Category maps for dataset {}: {}".format(dataset_name, meta.category_map))


def _add_category_info_to_bootstrapping_metadata(dataset_name: str, dataset_cfg: CfgNode) -> None:
    meta = MetadataCatalog.get(dataset_name)
    meta.category_to_class_mapping = get_category_to_class_mapping(dataset_cfg)
    meta.categories = dataset_cfg.CATEGORIES
    meta.max_count_per_category = dataset_cfg.MAX_COUNT_PER_CATEGORY
    logger = logging.getLogger(__name__)
    logger.info(
        "Category to class mapping for dataset {}: {}".format(
            dataset_name, meta.category_to_class_mapping
        )
    )


def _maybe_add_class_to_mesh_name_map_to_metadata(dataset_names: List[str], cfg: CfgNode) -> None:
    for dataset_name in dataset_names:
        meta = MetadataCatalog.get(dataset_name)
        if not hasattr(meta, "class_to_mesh_name"):
            meta.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg)


def _merge_categories(dataset_names: Collection[str]) -> _MergedCategoriesT:
    merged_categories = defaultdict(list)
    category_names = {}
    for dataset_name in dataset_names:
        meta = MetadataCatalog.get(dataset_name)
        whitelisted_categories = meta.get("whitelisted_categories")
        category_map = meta.get("category_map", {})
        cat_ids = (
            whitelisted_categories if whitelisted_categories is not None else meta.categories.keys()
        )
        for cat_id in cat_ids:
            cat_name = meta.categories[cat_id]
            cat_id_mapped = category_map.get(cat_id, cat_id)
            if cat_id_mapped == cat_id or cat_id_mapped in cat_ids:
                category_names[cat_id] = cat_name
            else:
                category_names[cat_id] = str(cat_id_mapped)
            # assign temporary mapped category name, this name can be changed
            # during the second pass, since mapped ID can correspond to a category
            # from a different dataset
            cat_name_mapped = meta.categories[cat_id_mapped]
            merged_categories[cat_id_mapped].append(
                _DatasetCategory(
                    id=cat_id,
                    name=cat_name,
                    mapped_id=cat_id_mapped,
                    mapped_name=cat_name_mapped,
                    dataset_name=dataset_name,
                )
            )
    # second pass to assign proper mapped category names
    for cat_id, categories in merged_categories.items():
        for cat in categories:
            if cat_id in category_names and cat.mapped_name != category_names[cat_id]:
                cat.mapped_name = category_names[cat_id]

    return merged_categories


def _warn_if_merged_different_categories(merged_categories: _MergedCategoriesT) -> None:
    logger = logging.getLogger(__name__)
    for cat_id in merged_categories:
        merged_categories_i = merged_categories[cat_id]
        first_cat_name = merged_categories_i[0].name
        if len(merged_categories_i) > 1 and not all(
            cat.name == first_cat_name for cat in merged_categories_i[1:]
        ):
            cat_summary_str = ", ".join(
                [f"{cat.id} ({cat.name}) from {cat.dataset_name}" for cat in merged_categories_i]
            )
            logger.warning(
                f"Merged category {cat_id} corresponds to the following categories: "
                f"{cat_summary_str}"
            )


def combine_detection_dataset_dicts(
    dataset_names: Collection[str],
    keep_instance_predicate: Optional[InstancePredicate] = None,
    proposal_files: Optional[Collection[str]] = None,
) -> List[Instance]:
    """
    Load and prepare dataset dicts for training / testing

    Args:
        dataset_names (Collection[str]): a list of dataset names
        keep_instance_predicate (Callable: Dict[str, Any] -> bool): predicate
            applied to instance dicts which defines whether to keep the instance
        proposal_files (Collection[str]): if given, a list of object proposal files
            that match each dataset in `dataset_names`.
    """
    assert len(dataset_names)
    if proposal_files is None:
        proposal_files = [None] * len(dataset_names)
    assert len(dataset_names) == len(proposal_files)
    # load datasets and metadata
    dataset_name_to_dicts = {}
    for dataset_name in dataset_names:
        dataset_name_to_dicts[dataset_name] = DatasetCatalog.get(dataset_name)
        assert len(dataset_name_to_dicts), f"Dataset '{dataset_name}' is empty!"
    # merge categories, requires category metadata to be loaded
    # cat_id -> [(orig_cat_id, cat_name, dataset_name)]
    merged_categories = _merge_categories(dataset_names)
    _warn_if_merged_different_categories(merged_categories)
    merged_category_names = [
        merged_categories[cat_id][0].mapped_name for cat_id in sorted(merged_categories)
    ]
    # map to contiguous category IDs
    _add_category_id_to_contiguous_id_maps_to_metadata(merged_categories)
    # load annotations and dataset metadata
    for dataset_name, proposal_file in zip(dataset_names, proposal_files):
        dataset_dicts = dataset_name_to_dicts[dataset_name]
        assert len(dataset_dicts), f"Dataset '{dataset_name}' is empty!"
        if proposal_file is not None:
            dataset_dicts = load_proposals_into_dataset(dataset_dicts, proposal_file)
        dataset_dicts = _maybe_filter_and_map_categories(dataset_name, dataset_dicts)
        print_instances_class_histogram(dataset_dicts, merged_category_names)
        dataset_name_to_dicts[dataset_name] = dataset_dicts

    if keep_instance_predicate is not None:
        all_datasets_dicts_plain = [
            d
            for d in itertools.chain.from_iterable(dataset_name_to_dicts.values())
            if keep_instance_predicate(d)
        ]
    else:
        all_datasets_dicts_plain = list(
            itertools.chain.from_iterable(dataset_name_to_dicts.values())
        )
    return all_datasets_dicts_plain


def build_detection_train_loader(cfg: CfgNode, mapper=None):
    """
    A data loader is created in a way similar to that of Detectron2.
    The main differences are:
     - it allows to combine datasets with different but compatible object category sets

    The data loader is created by the following steps:
    1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
    2. Start workers to work on the dicts. Each worker will:
        * Map each metadata dict into another format to be consumed by the model.
        * Batch them by simply putting dicts into a list.
    The batched ``list[mapped_dict]`` is what this dataloader will return.

    Args:
        cfg (CfgNode): the config
        mapper (callable): a callable which takes a sample (dict) from dataset and
            returns the format to be consumed by the model.
            By default it will be `DatasetMapper(cfg, True)`.

    Returns:
        an infinite iterator of training data
    """

    _add_category_whitelists_to_metadata(cfg)
    _add_category_maps_to_metadata(cfg)
    _maybe_add_class_to_mesh_name_map_to_metadata(cfg.DATASETS.TRAIN, cfg)
    dataset_dicts = combine_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        keep_instance_predicate=_get_train_keep_instance_predicate(cfg),
        proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
    )
    if mapper is None:
        mapper = DatasetMapper(cfg, True)
    return d2_build_detection_train_loader(cfg, dataset=dataset_dicts, mapper=mapper)


def build_detection_test_loader(cfg, dataset_name, mapper=None):
    """
    Similar to `build_detection_train_loader`.
    But this function uses the given `dataset_name` argument (instead of the names in cfg),
    and uses batch size 1.

    Args:
        cfg: a detectron2 CfgNode
        dataset_name (str): a name of the dataset that's available in the DatasetCatalog
        mapper (callable): a callable which takes a sample (dict) from dataset
            and returns the format to be consumed by the model.
            By default it will be `DatasetMapper(cfg, False)`.

    Returns:
        DataLoader: a torch DataLoader, that loads the given detection
            dataset, with test-time transformation and batching.
    """
    _add_category_whitelists_to_metadata(cfg)
    _add_category_maps_to_metadata(cfg)
    _maybe_add_class_to_mesh_name_map_to_metadata([dataset_name], cfg)
    dataset_dicts = combine_detection_dataset_dicts(
        [dataset_name],
        keep_instance_predicate=_get_test_keep_instance_predicate(cfg),
        proposal_files=[
            cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
        ]
        if cfg.MODEL.LOAD_PROPOSALS
        else None,
    )
    sampler = None
    if not cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE:
        sampler = torch.utils.data.SequentialSampler(dataset_dicts)
    if mapper is None:
        mapper = DatasetMapper(cfg, False)
    return d2_build_detection_test_loader(
        dataset_dicts, mapper=mapper, num_workers=cfg.DATALOADER.NUM_WORKERS, sampler=sampler
    )


def build_frame_selector(cfg: CfgNode):
    strategy = FrameSelectionStrategy(cfg.STRATEGY)
    if strategy == FrameSelectionStrategy.RANDOM_K:
        frame_selector = RandomKFramesSelector(cfg.NUM_IMAGES)
    elif strategy == FrameSelectionStrategy.FIRST_K:
        frame_selector = FirstKFramesSelector(cfg.NUM_IMAGES)
    elif strategy == FrameSelectionStrategy.LAST_K:
        frame_selector = LastKFramesSelector(cfg.NUM_IMAGES)
    elif strategy == FrameSelectionStrategy.ALL:
        frame_selector = None
    # pyre-fixme[61]: `frame_selector` may not be initialized here.
    return frame_selector


def build_transform(cfg: CfgNode, data_type: str):
    if cfg.TYPE == "resize":
        if data_type == "image":
            return ImageResizeTransform(cfg.MIN_SIZE, cfg.MAX_SIZE)
    raise ValueError(f"Unknown transform {cfg.TYPE} for data type {data_type}")


def build_combined_loader(cfg: CfgNode, loaders: Collection[Loader], ratios: Sequence[float]):
    images_per_worker = _compute_num_images_per_worker(cfg)
    return CombinedDataLoader(loaders, images_per_worker, ratios)


def build_bootstrap_dataset(dataset_name: str, cfg: CfgNode) -> Sequence[torch.Tensor]:
    """
    Build dataset that provides data to bootstrap on

    Args:
        dataset_name (str): Name of the dataset, needs to have associated metadata
            to load the data
        cfg (CfgNode): bootstrapping config
    Returns:
        Sequence[Tensor] - dataset that provides image batches, Tensors of size
            [N, C, H, W] of type float32
    """
    logger = logging.getLogger(__name__)
    _add_category_info_to_bootstrapping_metadata(dataset_name, cfg)
    meta = MetadataCatalog.get(dataset_name)
    factory = BootstrapDatasetFactoryCatalog.get(meta.dataset_type)
    dataset = None
    if factory is not None:
        dataset = factory(meta, cfg)
    if dataset is None:
        logger.warning(f"Failed to create dataset {dataset_name} of type {meta.dataset_type}")
    return dataset


def build_data_sampler(cfg: CfgNode, sampler_cfg: CfgNode, embedder: Optional[torch.nn.Module]):
    if sampler_cfg.TYPE == "densepose_uniform":
        data_sampler = PredictionToGroundTruthSampler()
        # transform densepose pred -> gt
        data_sampler.register_sampler(
            "pred_densepose",
            "gt_densepose",
            DensePoseUniformSampler(count_per_class=sampler_cfg.COUNT_PER_CLASS),
        )
        data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
        return data_sampler
    elif sampler_cfg.TYPE == "densepose_UV_confidence":
        data_sampler = PredictionToGroundTruthSampler()
        # transform densepose pred -> gt
        data_sampler.register_sampler(
            "pred_densepose",
            "gt_densepose",
            DensePoseConfidenceBasedSampler(
                confidence_channel="sigma_2",
                count_per_class=sampler_cfg.COUNT_PER_CLASS,
                search_proportion=0.5,
            ),
        )
        data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
        return data_sampler
    elif sampler_cfg.TYPE == "densepose_fine_segm_confidence":
        data_sampler = PredictionToGroundTruthSampler()
        # transform densepose pred -> gt
        data_sampler.register_sampler(
            "pred_densepose",
            "gt_densepose",
            DensePoseConfidenceBasedSampler(
                confidence_channel="fine_segm_confidence",
                count_per_class=sampler_cfg.COUNT_PER_CLASS,
                search_proportion=0.5,
            ),
        )
        data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
        return data_sampler
    elif sampler_cfg.TYPE == "densepose_coarse_segm_confidence":
        data_sampler = PredictionToGroundTruthSampler()
        # transform densepose pred -> gt
        data_sampler.register_sampler(
            "pred_densepose",
            "gt_densepose",
            DensePoseConfidenceBasedSampler(
                confidence_channel="coarse_segm_confidence",
                count_per_class=sampler_cfg.COUNT_PER_CLASS,
                search_proportion=0.5,
            ),
        )
        data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
        return data_sampler
    elif sampler_cfg.TYPE == "densepose_cse_uniform":
        assert embedder is not None
        data_sampler = PredictionToGroundTruthSampler()
        # transform densepose pred -> gt
        data_sampler.register_sampler(
            "pred_densepose",
            "gt_densepose",
            DensePoseCSEUniformSampler(
                cfg=cfg,
                use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES,
                embedder=embedder,
                count_per_class=sampler_cfg.COUNT_PER_CLASS,
            ),
        )
        data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
        return data_sampler
    elif sampler_cfg.TYPE == "densepose_cse_coarse_segm_confidence":
        assert embedder is not None
        data_sampler = PredictionToGroundTruthSampler()
        # transform densepose pred -> gt
        data_sampler.register_sampler(
            "pred_densepose",
            "gt_densepose",
            DensePoseCSEConfidenceBasedSampler(
                cfg=cfg,
                use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES,
                embedder=embedder,
                confidence_channel="coarse_segm_confidence",
                count_per_class=sampler_cfg.COUNT_PER_CLASS,
                search_proportion=0.5,
            ),
        )
        data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
        return data_sampler

    raise ValueError(f"Unknown data sampler type {sampler_cfg.TYPE}")


def build_data_filter(cfg: CfgNode):
    if cfg.TYPE == "detection_score":
        min_score = cfg.MIN_VALUE
        return ScoreBasedFilter(min_score=min_score)
    raise ValueError(f"Unknown data filter type {cfg.TYPE}")


def build_inference_based_loader(
    cfg: CfgNode,
    dataset_cfg: CfgNode,
    model: torch.nn.Module,
    embedder: Optional[torch.nn.Module] = None,
) -> InferenceBasedLoader:
    """
    Constructs data loader based on inference results of a model.
    """
    dataset = build_bootstrap_dataset(dataset_cfg.DATASET, dataset_cfg.IMAGE_LOADER)
    meta = MetadataCatalog.get(dataset_cfg.DATASET)
    training_sampler = TrainingSampler(len(dataset))
    data_loader = torch.utils.data.DataLoader(
        dataset,  # pyre-ignore[6]
        batch_size=dataset_cfg.IMAGE_LOADER.BATCH_SIZE,
        sampler=training_sampler,
        num_workers=dataset_cfg.IMAGE_LOADER.NUM_WORKERS,
        collate_fn=trivial_batch_collator,
        worker_init_fn=worker_init_reset_seed,
    )
    return InferenceBasedLoader(
        model,
        data_loader=data_loader,
        data_sampler=build_data_sampler(cfg, dataset_cfg.DATA_SAMPLER, embedder),
        data_filter=build_data_filter(dataset_cfg.FILTER),
        shuffle=True,
        batch_size=dataset_cfg.INFERENCE.OUTPUT_BATCH_SIZE,
        inference_batch_size=dataset_cfg.INFERENCE.INPUT_BATCH_SIZE,
        category_to_class_mapping=meta.category_to_class_mapping,
    )


def has_inference_based_loaders(cfg: CfgNode) -> bool:
    """
    Returns True, if at least one inferense-based loader must
    be instantiated for training
    """
    return len(cfg.BOOTSTRAP_DATASETS) > 0


def build_inference_based_loaders(
    cfg: CfgNode, model: torch.nn.Module
) -> Tuple[List[InferenceBasedLoader], List[float]]:
    loaders = []
    ratios = []
    embedder = build_densepose_embedder(cfg).to(device=model.device)  # pyre-ignore[16]
    for dataset_spec in cfg.BOOTSTRAP_DATASETS:
        dataset_cfg = get_bootstrap_dataset_config().clone()
        dataset_cfg.merge_from_other_cfg(CfgNode(dataset_spec))
        loader = build_inference_based_loader(cfg, dataset_cfg, model, embedder)
        loaders.append(loader)
        ratios.append(dataset_cfg.RATIO)
    return loaders, ratios


def build_video_list_dataset(meta: Metadata, cfg: CfgNode):
    video_list_fpath = meta.video_list_fpath
    video_base_path = meta.video_base_path
    category = meta.category
    if cfg.TYPE == "video_keyframe":
        frame_selector = build_frame_selector(cfg.SELECT)
        transform = build_transform(cfg.TRANSFORM, data_type="image")
        video_list = video_list_from_file(video_list_fpath, video_base_path)
        keyframe_helper_fpath = getattr(cfg, "KEYFRAME_HELPER", None)
        return VideoKeyframeDataset(
            video_list, category, frame_selector, transform, keyframe_helper_fpath
        )


class _BootstrapDatasetFactoryCatalog(UserDict):
    """
    A global dictionary that stores information about bootstrapped datasets creation functions
    from metadata and config, for diverse DatasetType
    """

    def register(self, dataset_type: DatasetType, factory: Callable[[Metadata, CfgNode], Dataset]):
        """
        Args:
            dataset_type (DatasetType): a DatasetType e.g. DatasetType.VIDEO_LIST
            factory (Callable[Metadata, CfgNode]): a callable which takes Metadata and cfg
            arguments and returns a dataset object.
        """
        assert dataset_type not in self, "Dataset '{}' is already registered!".format(dataset_type)
        self[dataset_type] = factory


BootstrapDatasetFactoryCatalog = _BootstrapDatasetFactoryCatalog()
BootstrapDatasetFactoryCatalog.register(DatasetType.VIDEO_LIST, build_video_list_dataset)