Spaces:
Sleeping
Sleeping
from typing import Any, Dict, Optional | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from leffa.pipeline import LeffaPipeline | |
def pil_to_tensor(images): | |
images = np.array(images).astype(np.float32) / 255.0 | |
images = torch.from_numpy(images.transpose(2, 0, 1)) | |
return images | |
class LeffaInference(object): | |
def __init__( | |
self, | |
model: nn.Module, | |
ckpt_path: Optional[str] = None, | |
repaint: bool = False, | |
) -> None: | |
self.model: torch.nn.Module = model | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
# load model | |
if ckpt_path is not None: | |
self.model.load_state_dict(torch.load(ckpt_path, map_location="cpu")) | |
self.model = self.model.to(self.device) | |
self.model.eval() | |
self.pipe = LeffaPipeline(model=self.model, repaint=repaint) | |
def to_gpu(self, data: Dict[str, Any]) -> Dict[str, Any]: | |
for k, v in data.items(): | |
if isinstance(v, torch.Tensor): | |
data[k] = v.to(self.device) | |
return data | |
def __call__(self, data: Dict[str, Any], **kwargs) -> Dict[str, Any]: | |
data = self.to_gpu(data) | |
num_inference_steps = kwargs.get("num_inference_steps", 50) | |
guidance_scale = kwargs.get("guidance_scale", 2.5) | |
seed = kwargs.get("seed", 42) | |
generator = torch.Generator(self.pipe.device).manual_seed(seed) | |
images = self.pipe( | |
src_image=data["src_image"], | |
ref_image=data["ref_image"], | |
mask=data["mask"], | |
densepose=data["densepose"], | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
)[0] | |
# images = [pil_to_tensor(image) for image in images] | |
# images = torch.stack(images) | |
outputs = {} | |
outputs["src_image"] = (data["src_image"] + 1.0) / 2.0 | |
outputs["ref_image"] = (data["ref_image"] + 1.0) / 2.0 | |
outputs["generated_image"] = images | |
return outputs | |