Leffa / leffa /pipeline.py
franciszzj's picture
init code
b213d84
raw
history blame
9.41 kB
import inspect
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from PIL import Image, ImageFilter
class LeffaPipeline(object):
def __init__(
self,
model,
repaint=True,
device="cuda",
):
self.vae = model.vae
self.unet_encoder = model.unet_encoder
self.unet = model.unet
self.noise_scheduler = model.noise_scheduler
self.repaint = repaint # used for virtual try-on
self.device = device
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.noise_scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.noise_scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
@torch.no_grad()
def __call__(
self,
src_image,
ref_image,
mask,
densepose,
num_inference_steps: int = 50,
do_classifier_free_guidance=True,
guidance_scale: float = 2.5,
generator=None,
eta=1.0,
**kwargs,
):
src_image = src_image.to(device=self.vae.device, dtype=self.vae.dtype)
ref_image = ref_image.to(device=self.vae.device, dtype=self.vae.dtype)
mask = mask.to(device=self.vae.device, dtype=self.vae.dtype)
densepose = densepose.to(device=self.vae.device, dtype=self.vae.dtype)
masked_image = src_image * (mask < 0.5)
# 1. VAE encoding
with torch.no_grad():
# src_image_latent = self.vae.encode(src_image).latent_dist.sample()
masked_image_latent = self.vae.encode(
masked_image).latent_dist.sample()
ref_image_latent = self.vae.encode(ref_image).latent_dist.sample()
# src_image_latent = src_image_latent * self.vae.config.scaling_factor
masked_image_latent = masked_image_latent * self.vae.config.scaling_factor
ref_image_latent = ref_image_latent * self.vae.config.scaling_factor
mask_latent = F.interpolate(
mask, size=masked_image_latent.shape[-2:], mode="nearest")
densepose_latent = F.interpolate(
densepose, size=masked_image_latent.shape[-2:], mode="nearest")
# 2. prepare noise
noise = torch.randn_like(masked_image_latent)
self.noise_scheduler.set_timesteps(
num_inference_steps, device=self.device)
timesteps = self.noise_scheduler.timesteps
noise = noise * self.noise_scheduler.init_noise_sigma
latent = noise
# 3. classifier-free guidance
if do_classifier_free_guidance:
# src_image_latent = torch.cat([src_image_latent] * 2)
masked_image_latent = torch.cat([masked_image_latent] * 2)
ref_image_latent = torch.cat(
[torch.zeros_like(ref_image_latent), ref_image_latent])
mask_latent = torch.cat([mask_latent] * 2)
densepose_latent = torch.cat([densepose_latent] * 2)
# 6. Denoising loop
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = (
len(timesteps) - num_inference_steps * self.noise_scheduler.order
)
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latent if we are doing classifier free guidance
_latent_model_input = (
torch.cat(
[latent] * 2) if do_classifier_free_guidance else latent
)
_latent_model_input = self.noise_scheduler.scale_model_input(
_latent_model_input, t
)
# prepare the input for the inpainting model
latent_model_input = torch.cat(
[
_latent_model_input,
mask_latent,
masked_image_latent,
densepose_latent,
],
dim=1,
)
down, reference_features = self.unet_encoder(
ref_image_latent, t, encoder_hidden_states=None, return_dict=False
)
reference_features = list(reference_features)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=None,
cross_attention_kwargs=None,
added_cond_kwargs=None,
reference_features=reference_features,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_cond - noise_pred_uncond
)
if do_classifier_free_guidance and guidance_scale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_cond,
guidance_rescale=guidance_scale,
)
# compute the previous noisy sample x_t -> x_t-1
latent = self.noise_scheduler.step(
noise_pred, t, latent, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps
and (i + 1) % self.noise_scheduler.order == 0
):
progress_bar.update()
# Decode the final latent
gen_image = latent_to_image(latent, self.vae)
if self.repaint:
src_image = (src_image / 2 + 0.5).clamp(0, 1)
src_image = src_image.cpu().permute(0, 2, 3, 1).float().numpy()
src_image = numpy_to_pil(src_image)
mask = mask.cpu().permute(0, 2, 3, 1).float().numpy()
mask = numpy_to_pil(mask)
mask = [i.convert("RGB") for i in mask]
gen_image = [
repaint(_src_image, _mask, _gen_image)
for _src_image, _mask, _gen_image in zip(src_image, mask, gen_image)
]
return (gen_image,)
def latent_to_image(latent, vae):
latent = 1 / vae.config.scaling_factor * latent
image = vae.decode(latent).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = numpy_to_pil(image)
return image
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L")
for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def repaint(person, mask, result):
_, h = result.size
kernal_size = h // 100
if kernal_size % 2 == 0:
kernal_size += 1
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
person_np = np.array(person)
result_np = np.array(result)
mask_np = np.array(mask) / 255
repaint_result = person_np * (1 - mask_np) + result_np * mask_np
repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
return repaint_result
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = (
guidance_rescale * noise_pred_rescaled +
(1 - guidance_rescale) * noise_cfg
)
return noise_cfg