Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------------ | |
# Copyright (c) Microsoft | |
# Licensed under the MIT License. | |
# Written by Bin Xiao (Bin.Xiao@microsoft.com) | |
# ------------------------------------------------------------------------------ | |
from __future__ import absolute_import, division, print_function | |
import cv2 | |
import numpy as np | |
import torch | |
class BRG2Tensor_transform(object): | |
def __call__(self, pic): | |
img = torch.from_numpy(pic.transpose((2, 0, 1))) | |
if isinstance(img, torch.ByteTensor): | |
return img.float() | |
else: | |
return img | |
class BGR2RGB_transform(object): | |
def __call__(self, tensor): | |
return tensor[[2, 1, 0], :, :] | |
def flip_back(output_flipped, matched_parts): | |
""" | |
ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width) | |
""" | |
assert ( | |
output_flipped.ndim == 4 | |
), "output_flipped should be [batch_size, num_joints, height, width]" | |
output_flipped = output_flipped[:, :, :, ::-1] | |
for pair in matched_parts: | |
tmp = output_flipped[:, pair[0], :, :].copy() | |
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] | |
output_flipped[:, pair[1], :, :] = tmp | |
return output_flipped | |
def fliplr_joints(joints, joints_vis, width, matched_parts): | |
""" | |
flip coords | |
""" | |
# Flip horizontal | |
joints[:, 0] = width - joints[:, 0] - 1 | |
# Change left-right parts | |
for pair in matched_parts: | |
joints[pair[0], :], joints[pair[1], :] = ( | |
joints[pair[1], :], | |
joints[pair[0], :].copy(), | |
) | |
joints_vis[pair[0], :], joints_vis[pair[1], :] = ( | |
joints_vis[pair[1], :], | |
joints_vis[pair[0], :].copy(), | |
) | |
return joints * joints_vis, joints_vis | |
def transform_preds(coords, center, scale, input_size): | |
target_coords = np.zeros(coords.shape) | |
trans = get_affine_transform(center, scale, 0, input_size, inv=1) | |
for p in range(coords.shape[0]): | |
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) | |
return target_coords | |
def transform_parsing(pred, center, scale, width, height, input_size): | |
trans = get_affine_transform(center, scale, 0, input_size, inv=1) | |
target_pred = cv2.warpAffine( | |
pred, | |
trans, | |
(int(width), int(height)), # (int(width), int(height)), | |
flags=cv2.INTER_NEAREST, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=(0), | |
) | |
return target_pred | |
def transform_logits(logits, center, scale, width, height, input_size): | |
trans = get_affine_transform(center, scale, 0, input_size, inv=1) | |
channel = logits.shape[2] | |
target_logits = [] | |
for i in range(channel): | |
target_logit = cv2.warpAffine( | |
logits[:, :, i], | |
trans, | |
(int(width), int(height)), # (int(width), int(height)), | |
flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=(0), | |
) | |
target_logits.append(target_logit) | |
target_logits = np.stack(target_logits, axis=2) | |
return target_logits | |
def get_affine_transform( | |
center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0 | |
): | |
if not isinstance(scale, np.ndarray) and not isinstance(scale, list): | |
print(scale) | |
scale = np.array([scale, scale]) | |
scale_tmp = scale | |
src_w = scale_tmp[0] | |
dst_w = output_size[1] | |
dst_h = output_size[0] | |
rot_rad = np.pi * rot / 180 | |
src_dir = get_dir([0, src_w * -0.5], rot_rad) | |
dst_dir = np.array([0, (dst_w - 1) * -0.5], np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
dst = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = center + scale_tmp * shift | |
src[1, :] = center + src_dir + scale_tmp * shift | |
dst[0, :] = [(dst_w - 1) * 0.5, (dst_h - 1) * 0.5] | |
dst[1, :] = np.array([(dst_w - 1) * 0.5, (dst_h - 1) * 0.5]) + dst_dir | |
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) | |
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) | |
if inv: | |
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) | |
else: | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
return trans | |
def affine_transform(pt, t): | |
new_pt = np.array([pt[0], pt[1], 1.0]).T | |
new_pt = np.dot(t, new_pt) | |
return new_pt[:2] | |
def get_3rd_point(a, b): | |
direct = a - b | |
return b + np.array([-direct[1], direct[0]], dtype=np.float32) | |
def get_dir(src_point, rot_rad): | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
src_result = [0, 0] | |
src_result[0] = src_point[0] * cs - src_point[1] * sn | |
src_result[1] = src_point[0] * sn + src_point[1] * cs | |
return src_result | |
def crop(img, center, scale, output_size, rot=0): | |
trans = get_affine_transform(center, scale, rot, output_size) | |
dst_img = cv2.warpAffine( | |
img, trans, (int(output_size[1]), int(output_size[0])), flags=cv2.INTER_LINEAR | |
) | |
return dst_img | |