Leffa / densepose /structures /transform_data.py
franciszzj's picture
init code
b213d84
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import BinaryIO, Dict, Union
import torch
def normalized_coords_transform(x0, y0, w, h):
"""
Coordinates transform that maps top left corner to (-1, -1) and bottom
right corner to (1, 1). Used for torch.grid_sample to initialize the
grid
"""
def f(p):
return (2 * (p[0] - x0) / w - 1, 2 * (p[1] - y0) / h - 1)
return f
class DensePoseTransformData:
# Horizontal symmetry label transforms used for horizontal flip
MASK_LABEL_SYMMETRIES = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14]
# fmt: off
POINT_LABEL_SYMMETRIES = [ 0, 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23] # noqa
# fmt: on
def __init__(self, uv_symmetries: Dict[str, torch.Tensor], device: torch.device):
self.mask_label_symmetries = DensePoseTransformData.MASK_LABEL_SYMMETRIES
self.point_label_symmetries = DensePoseTransformData.POINT_LABEL_SYMMETRIES
self.uv_symmetries = uv_symmetries
self.device = torch.device("cpu")
def to(self, device: torch.device, copy: bool = False) -> "DensePoseTransformData":
"""
Convert transform data to the specified device
Args:
device (torch.device): device to convert the data to
copy (bool): flag that specifies whether to copy or to reference the data
in case the device is the same
Return:
An instance of `DensePoseTransformData` with data stored on the specified device
"""
if self.device == device and not copy:
return self
uv_symmetry_map = {}
for key in self.uv_symmetries:
uv_symmetry_map[key] = self.uv_symmetries[key].to(device=device, copy=copy)
return DensePoseTransformData(uv_symmetry_map, device)
@staticmethod
def load(io: Union[str, BinaryIO]):
"""
Args:
io: (str or binary file-like object): input file to load data from
Returns:
An instance of `DensePoseTransformData` with transforms loaded from the file
"""
import scipy.io
uv_symmetry_map = scipy.io.loadmat(io)
uv_symmetry_map_torch = {}
for key in ["U_transforms", "V_transforms"]:
uv_symmetry_map_torch[key] = []
map_src = uv_symmetry_map[key]
map_dst = uv_symmetry_map_torch[key]
for i in range(map_src.shape[1]):
map_dst.append(torch.from_numpy(map_src[0, i]).to(dtype=torch.float))
uv_symmetry_map_torch[key] = torch.stack(map_dst, dim=0)
transform_data = DensePoseTransformData(uv_symmetry_map_torch, device=torch.device("cpu"))
return transform_data