# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Bin Xiao (Bin.Xiao@microsoft.com) # ------------------------------------------------------------------------------ from __future__ import absolute_import, division, print_function import cv2 import numpy as np import torch class BRG2Tensor_transform(object): def __call__(self, pic): img = torch.from_numpy(pic.transpose((2, 0, 1))) if isinstance(img, torch.ByteTensor): return img.float() else: return img class BGR2RGB_transform(object): def __call__(self, tensor): return tensor[[2, 1, 0], :, :] def flip_back(output_flipped, matched_parts): """ ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width) """ assert ( output_flipped.ndim == 4 ), "output_flipped should be [batch_size, num_joints, height, width]" output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped def fliplr_joints(joints, joints_vis, width, matched_parts): """ flip coords """ # Flip horizontal joints[:, 0] = width - joints[:, 0] - 1 # Change left-right parts for pair in matched_parts: joints[pair[0], :], joints[pair[1], :] = ( joints[pair[1], :], joints[pair[0], :].copy(), ) joints_vis[pair[0], :], joints_vis[pair[1], :] = ( joints_vis[pair[1], :], joints_vis[pair[0], :].copy(), ) return joints * joints_vis, joints_vis def transform_preds(coords, center, scale, input_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, input_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def transform_parsing(pred, center, scale, width, height, input_size): trans = get_affine_transform(center, scale, 0, input_size, inv=1) target_pred = cv2.warpAffine( pred, trans, (int(width), int(height)), # (int(width), int(height)), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=(0), ) return target_pred def transform_logits(logits, center, scale, width, height, input_size): trans = get_affine_transform(center, scale, 0, input_size, inv=1) channel = logits.shape[2] target_logits = [] for i in range(channel): target_logit = cv2.warpAffine( logits[:, :, i], trans, (int(width), int(height)), # (int(width), int(height)), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0), ) target_logits.append(target_logit) target_logits = np.stack(target_logits, axis=2) return target_logits def get_affine_transform( center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0 ): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[1] dst_h = output_size[0] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, (dst_w - 1) * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [(dst_w - 1) * 0.5, (dst_h - 1) * 0.5] dst[1, :] = np.array([(dst_w - 1) * 0.5, (dst_h - 1) * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.0]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def crop(img, center, scale, output_size, rot=0): trans = get_affine_transform(center, scale, rot, output_size) dst_img = cv2.warpAffine( img, trans, (int(output_size[1]), int(output_size[0])), flags=cv2.INTER_LINEAR ) return dst_img