Spaces:
Running
Running
import transformers | |
import re | |
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline | |
import torch | |
import gradio as gr | |
import json | |
import os | |
import shutil | |
import requests | |
import pandas as pd | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
editorial_model = "PleIAs/Estienne" | |
token_classifier = pipeline( | |
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device | |
) | |
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512) | |
css = """ | |
<style> | |
.manuscript { | |
display: flex; | |
margin-bottom: 20px; | |
align-items: flex-start; /* Align items to the top */ | |
} | |
.annotation { | |
width: 10%; | |
padding-right: 20px; | |
color: grey; | |
font-style: italic; | |
padding-top: 5px; /* Add some top padding to align with the title */ | |
} | |
.content { | |
width: 70%; | |
} | |
h2 { | |
margin-top: 0; | |
margin-bottom: 10px; /* Add some bottom margin for spacing */ | |
} | |
.title-content { | |
margin-top: -5px; /* Negative margin to offset the padding of annotation */ | |
} | |
</style> | |
""" | |
# Preprocess the 'word' column | |
def preprocess_text(text): | |
# Remove HTML tags | |
text = re.sub(r'<[^>]+>', '', text) | |
# Replace newlines with spaces | |
text = re.sub(r'\n', ' ', text) | |
# Replace multiple spaces with a single space | |
text = re.sub(r'\s+', ' ', text) | |
# Strip leading and trailing whitespace | |
return text.strip() | |
def split_text(text, max_tokens=500): | |
# Split the text by newline characters | |
parts = text.split("\n") | |
chunks = [] | |
current_chunk = "" | |
for part in parts: | |
# Add part to current chunk | |
if current_chunk: | |
temp_chunk = current_chunk + "\n" + part | |
else: | |
temp_chunk = part | |
# Tokenize the temporary chunk | |
num_tokens = len(tokenizer.tokenize(temp_chunk)) | |
if num_tokens <= max_tokens: | |
current_chunk = temp_chunk | |
else: | |
if current_chunk: | |
chunks.append(current_chunk) | |
current_chunk = part | |
if current_chunk: | |
chunks.append(current_chunk) | |
# If no newlines were found and still exceeding max_tokens, split further | |
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens: | |
long_text = chunks[0] | |
chunks = [] | |
while len(tokenizer.tokenize(long_text)) > max_tokens: | |
split_point = len(long_text) // 2 | |
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]): | |
split_point += 1 | |
# Ensure split_point does not go out of range | |
if split_point >= len(long_text): | |
split_point = len(long_text) - 1 | |
chunks.append(long_text[:split_point].strip()) | |
long_text = long_text[split_point:].strip() | |
if long_text: | |
chunks.append(long_text) | |
return chunks | |
def transform_chunks(marianne_segmentation): | |
marianne_segmentation = pd.DataFrame(marianne_segmentation) | |
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator'] | |
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False) | |
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text) | |
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')] | |
html_output = [] | |
for _, row in marianne_segmentation.iterrows(): | |
entity_group = row['entity_group'] | |
result_entity = "[" + entity_group.capitalize() + "]" | |
word = row['word'] | |
if entity_group == 'title': | |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>') | |
else: | |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>') | |
final_html = '\n'.join(html_output) | |
return final_html | |
# Class to encapsulate the Falcon chatbot | |
class MistralChatBot: | |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"): | |
self.system_prompt = system_prompt | |
def predict(self, user_message): | |
editorial_text = re.sub("\n", " ¶ ", user_message) | |
num_tokens = len(tokenizer.tokenize(editorial_text)) | |
if num_tokens > 500: | |
batch_prompts = split_text(editorial_text, max_tokens=500) | |
else: | |
batch_prompts = [editorial_text] | |
out = token_classifier(batch_prompts) | |
classified_list = [] | |
for classification in out: | |
df = pd.DataFrame(classification) | |
classified_list.append(df) | |
classified_list = pd.concat(classified_list) | |
out = transform_chunks(classified_list) | |
generated_text = f'{css}<h2 style="text-align:center">Réponse</h2>\n<div class="generation">{out}</div>' | |
return generated_text | |
# Create the Falcon chatbot instance | |
mistral_bot = MistralChatBot() | |
# Define the Gradio interface | |
title = "Éditorialisation" | |
description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)" | |
examples = [ | |
[ | |
"Qui peut bénéficier de l'AIP?", # user_message | |
0.7 # temperature | |
] | |
] | |
demo = gr.Blocks() | |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo: | |
gr.HTML("""<h1 style="text-align:center">Correction d'OCR</h1>""") | |
text_input = gr.Textbox(label="Votre texte.", type="text", lines=1) | |
text_button = gr.Button("Identifier les structures éditoriales") | |
text_output = gr.HTML(label="Le texte corrigé") | |
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output]) | |
if __name__ == "__main__": | |
demo.queue().launch() |