Spaces:
Running
Running
Pclanglais
commited on
Commit
•
9fcaecd
1
Parent(s):
bd727cb
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,16 @@ token_classifier = pipeline(
|
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def split_text(text, max_tokens=500):
|
24 |
# Split the text by newline characters
|
@@ -64,6 +74,32 @@ def split_text(text, max_tokens=500):
|
|
64 |
|
65 |
return chunks
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
# Class to encapsulate the Falcon chatbot
|
@@ -85,6 +121,7 @@ class MistralChatBot:
|
|
85 |
batch_prompts = [editorial_text]
|
86 |
|
87 |
out = token_classifier(batch_prompts)
|
|
|
88 |
print(out)
|
89 |
generated_text = '<h2 style="text-align:center">Réponse</h3>\n<div class="generation">' + out + "</div>"
|
90 |
return generated_text
|
@@ -102,18 +139,6 @@ examples = [
|
|
102 |
]
|
103 |
]
|
104 |
|
105 |
-
additional_inputs=[
|
106 |
-
gr.Slider(
|
107 |
-
label="Température",
|
108 |
-
value=0.2, # Default value
|
109 |
-
minimum=0.05,
|
110 |
-
maximum=1.0,
|
111 |
-
step=0.05,
|
112 |
-
interactive=True,
|
113 |
-
info="Des valeurs plus élevées donne plus de créativité, mais aussi d'étrangeté",
|
114 |
-
),
|
115 |
-
]
|
116 |
-
|
117 |
demo = gr.Blocks()
|
118 |
|
119 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
|
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
|
21 |
|
22 |
+
# Preprocess the 'word' column
|
23 |
+
def preprocess_text(text):
|
24 |
+
# Remove HTML tags
|
25 |
+
text = re.sub(r'<[^>]+>', '', text)
|
26 |
+
# Replace newlines with spaces
|
27 |
+
text = re.sub(r'\n', ' ', text)
|
28 |
+
# Replace multiple spaces with a single space
|
29 |
+
text = re.sub(r'\s+', ' ', text)
|
30 |
+
# Strip leading and trailing whitespace
|
31 |
+
return text.strip()
|
32 |
|
33 |
def split_text(text, max_tokens=500):
|
34 |
# Split the text by newline characters
|
|
|
74 |
|
75 |
return chunks
|
76 |
|
77 |
+
def transform_chunks(marianne_segmentation):
|
78 |
+
|
79 |
+
# Filter out separators
|
80 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
|
81 |
+
|
82 |
+
# Replace '¶' with '\n' and convert to string
|
83 |
+
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
|
84 |
+
|
85 |
+
#A bit of lceaning.
|
86 |
+
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
|
87 |
+
|
88 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'] != 'nan']
|
89 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'] != '']
|
90 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'] != ' ']
|
91 |
+
|
92 |
+
# Add entity_group as a header to each word
|
93 |
+
marianne_segmentation['word'] = '### ' + marianne_segmentation['entity_group'] + ' ###\n' + marianne_segmentation['word']
|
94 |
+
|
95 |
+
# Group by text_id, identifier, and date, then concatenate words
|
96 |
+
marianne_segmentation = marianne_segmentation.agg({
|
97 |
+
'word': lambda x: '\n\n'.join(x.dropna())
|
98 |
+
}).reset_index()
|
99 |
+
|
100 |
+
final_text = marianne_segmentation['word'].tolist()[0]
|
101 |
+
|
102 |
+
return final_text
|
103 |
|
104 |
|
105 |
# Class to encapsulate the Falcon chatbot
|
|
|
121 |
batch_prompts = [editorial_text]
|
122 |
|
123 |
out = token_classifier(batch_prompts)
|
124 |
+
out = transform_chunks(out)
|
125 |
print(out)
|
126 |
generated_text = '<h2 style="text-align:center">Réponse</h3>\n<div class="generation">' + out + "</div>"
|
127 |
return generated_text
|
|
|
139 |
]
|
140 |
]
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
demo = gr.Blocks()
|
143 |
|
144 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|