File size: 4,585 Bytes
7bacf76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import spaces
import gradio as gr
import torch
from diffusers import LCMScheduler, AutoPipelineForText2Image
from diffusers import AutoPipelineForInpainting, LCMScheduler
from diffusers import DiffusionPipeline, LCMScheduler
from PIL import Image, ImageEnhance
import io

@spaces.GPU
def generate_image(prompt, num_inference_steps, guidance_scale):
    model_id = "stabilityai/stable-diffusion-xl-base-1.0"
    adapter_id = "latent-consistency/lcm-lora-sdxl"

    pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, variant="fp16")
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    pipe.to("cuda")

    # Load and fuse lcm lora
    pipe.load_lora_weights(adapter_id)
    pipe.fuse_lora()

    # Generate the image
    image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0]
  
    return image

def inpaint_image(prompt, init_image, mask_image, num_inference_steps, guidance_scale):
    pipe = AutoPipelineForInpainting.from_pretrained(
        "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
        torch_dtype=torch.float32,
        variant="fp16",
    ).to("cuda")
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
    pipe.fuse_lora()

    if init_image is not None:
        init_image_path = init_image.name  # Get the file path
        init_image = Image.open(init_image_path).resize((1024, 1024))
    else:
        raise ValueError("Initial image not provided or invalid")

    if mask_image is not None:
        mask_image_path = mask_image.name  # Get the file path
        mask_image = Image.open(mask_image_path).resize((1024, 1024))
    else:
        raise ValueError("Mask image not provided or invalid")

    # Generate the inpainted image
    generator = torch.manual_seed(42)
    image = pipe(
        prompt=prompt,
        image=init_image,
        mask_image=mask_image,
        generator=generator,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
    ).images[0]

    return image

def generate_image_with_adapter(prompt, num_inference_steps, guidance_scale):
    pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    variant="fp16",
    torch_dtype=torch.float32
    ).to("cuda")

    # set scheduler
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

    # Load and fuse lcm lora
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm")
    pipe.load_lora_weights("Pclanglais/Mickey-1928", weight_name="pytorch_lora_weights.safetensors", adapter_name="mickey")

    # Combine LoRAs
    pipe.set_adapters(["lcm", "mickey"], adapter_weights=[1.0, 0.8])
    pipe.fuse_lora()
    generator = torch.manual_seed(0)
    # Generate the image
    image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator).images[0]
    pipe.unfuse_lora()
    return image


def modify_image(image, brightness, contrast):
    # Function to modify brightness and contrast
    image = Image.open(io.BytesIO(image))
    enhancer = ImageEnhance.Brightness(image)
    image = enhancer.enhance(brightness)
    enhancer = ImageEnhance.Contrast(image)
    image = enhancer.enhance(contrast)
    return image

with gr.Blocks(gr.themes.Soft()) as demo:
    with gr.Row():
        image_output = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion(label="Configuration Options"):
            prompt_input = gr.Textbox(label="Prompt", placeholder="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k")
            steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
            guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
            generate_button = gr.Button("Generate Image")
    with gr.Row():
        with gr.Accordion(label="Wiki-Mouse Image Generation"):
            adapter_prompt_input = gr.Textbox(label="Prompt", placeholder="papercut, a cute fox")
            adapter_steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
            adapter_guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
            adapter_generate_button = gr.Button("Generate Image with Adapter")

    generate_button.click(
        generate_image,
        inputs=[prompt_input, steps_input, guidance_input],
        outputs=image_output
    )

demo.launch()