Spaces:
Paused
Paused
import spaces | |
import gradio as gr | |
import torch | |
from diffusers import LCMScheduler, AutoPipelineForText2Image | |
from diffusers import AutoPipelineForInpainting, LCMScheduler | |
from diffusers import DiffusionPipeline, LCMScheduler | |
from PIL import Image, ImageEnhance | |
import io | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
variant="fp16", | |
torch_dtype=torch.float32 | |
).to("cuda") | |
# set scheduler | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# Load and fuse lcm lora | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm") | |
pipe.load_lora_weights("Pclanglais/wiki-model", weight_name="pytorch_lora_weights.safetensors", adapter_name="mickey") | |
# Combine LoRAs | |
pipe.set_adapters(["lcm", "mickey"], adapter_weights=[1.0, 1.0]) | |
pipe.fuse_lora() | |
def generate_image(prompt, num_inference_steps, guidance_scale): | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
adapter_id = "latent-consistency/lcm-lora-sdxl" | |
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, variant="fp16") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.to("cuda") | |
# Load and fuse lcm lora | |
pipe.load_lora_weights(adapter_id) | |
pipe.fuse_lora() | |
# Generate the image | |
image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] | |
return image | |
def inpaint_image(prompt, init_image, mask_image, num_inference_steps, guidance_scale): | |
pipe = AutoPipelineForInpainting.from_pretrained( | |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1", | |
torch_dtype=torch.float32, | |
variant="fp16", | |
).to("cuda") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
pipe.fuse_lora() | |
if init_image is not None: | |
init_image_path = init_image.name # Get the file path | |
init_image = Image.open(init_image_path).resize((1024, 1024)) | |
else: | |
raise ValueError("Initial image not provided or invalid") | |
if mask_image is not None: | |
mask_image_path = mask_image.name # Get the file path | |
mask_image = Image.open(mask_image_path).resize((1024, 1024)) | |
else: | |
raise ValueError("Mask image not provided or invalid") | |
# Generate the inpainted image | |
generator = torch.manual_seed(42) | |
image = pipe( | |
prompt=prompt, | |
image=init_image, | |
mask_image=mask_image, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
return image | |
def generate_image_with_adapter(prompt, num_inference_steps, guidance_scale): | |
generator = torch.manual_seed(0) | |
# Generate the image | |
image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator).images[0] | |
return image | |
with gr.Blocks(gr.themes.Soft()) as demo: | |
with gr.Row(): | |
image_output = gr.Image(label="Generated Image") | |
with gr.Row(): | |
with gr.Accordion(label="Wiki-Mouse Image Generation"): | |
adapter_prompt_input = gr.Textbox(label="Prompt", placeholder="papercut, a cute fox") | |
adapter_steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4) | |
adapter_guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1) | |
adapter_generate_button = gr.Button("Generate Image with Adapter") | |
adapter_generate_button.click( | |
generate_image_with_adapter, | |
inputs=[adapter_prompt_input, adapter_steps_input, adapter_guidance_input], | |
outputs=image_output | |
) | |
demo.launch() | |