import os
import openai
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info
openai.api_key = os.getenv('OPEN_AI_KEY')
hf_t_key = ('HF_TOKEN_KEY')
MODEL_NAME = "openai/whisper-small"
lang = "en"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded a recorded audio file . "
"The recorded file from the microphone uploaded, transcribed and immediately discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
"
"
)
return HTML_str
def yt_transcribe(yt_url):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
return html_embed_str, text
def predict(message, history):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
response = openai.ChatCompletion.create(
model= 'ft:gpt-3.5-turbo-0125:2292030-peach-tech:colleague-ai:9Ag6BysG',
messages= history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message = partial_message + chunk['choices'][0]['delta']['content']
yield partial_message
A1 = gr.ChatInterface(predict,
title="COLLEAGUE",
description="An All-In-One AI Productivity Suite By Peach State Innovation and Technology. Select The Corresponding Tab For Accessibility",
textbox=gr.Textbox(placeholder="Enter your question/prompt here..."),
theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate"),
retry_btn=None,
clear_btn="Clear Conversation")
A3 = gr.load(
"models/Salesforce/blip-image-captioning-large",
title=" ",
description="Upload Any Type of Imagery (photos, medical imagery, etc.), I'll Give You Its Description",
outputs=[gr.Textbox(label="I see...")],
theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate"))
A4 = gr.load(
"models/stabilityai/stable-diffusion-xl-base-1.0",
inputs=[gr.Textbox(label="Enter Your Image Description")],
outputs=[gr.Image(label="Image")],
title=" ",
description="Bring Your Imagination Into Existence, Create Unique Images With COLLEAGUE",
allow_flagging="never",
examples=["A gigantic celtic leprechaun wandering the streets of downtown Atlanta","A child eating pizza in a Brazilian favela"])
A5 = gr.HTML(
value=("""
"""),
)
A6 = gr.load(
"models/Falconsai/text_summarization",
title="",
description="Enter Text From Documents (from paragraphs to pages) and Instantly Create A Brief Summarization.",
theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate"))
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Microphone(type="filepath"),
gr.Audio(type="filepath"),
],
outputs="text",
title=" ",
description=(
"Transcribe real-time speech and audio files of any length at the click of a button."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.Textbox(lines=1, placeholder="Paste your YouTube video URL/web address here", label="YouTube Video URL")],
outputs=["html", "text"],
title=" ",
description=(
"Short on Time? Get The Core Details and Transcribe YouTube videos at the click of a button."
),
allow_flagging="never",
)
clp = gr.TabbedInterface([A1, A5, A6, mf_transcribe, yt_transcribe, A3, A4], ["Chat", "Write", "Summarize", "Audio Transcription", "Video Transcription", "Describe", "Create"], theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate"))
clp.queue().launch()