Spaces:
Build error
Build error
File size: 5,076 Bytes
1912645 eb40f59 1912645 ed2622c f6e8343 ed2622c 1912645 ed2622c eee15fe ed2622c f6e8343 eee15fe 1912645 ed2622c f6e8343 ed2622c eee15fe ed2622c eee15fe c9897c5 ed2622c 00aa15b ed2622c eee15fe c9897c5 ed2622c 1912645 945ab77 c9897c5 945ab77 1912645 abc0eca ed2622c 1912645 945ab77 1912645 eee15fe ed2622c 945ab77 1912645 bcd91cb afe64d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# import os
# import gradio as gr
# from scipy.io.wavfile import write
# import subprocess
# import torch
# from audio_separator import Separator # Ensure this is correctly implemented
# def inference(audio):
# os.makedirs("out", exist_ok=True)
# audio_path = 'test.wav'
# write(audio_path, audio[0], audio[1])
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# if device=='cuda':
# use_cuda=True
# print(f"Using device: {device}")
# else:
# use_cuda=False
# print(f"Using device: {device}")
# try:
# # Using subprocess.run for better control
# command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out"
# process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# print("Demucs script output:", process.stdout.decode())
# except subprocess.CalledProcessError as e:
# print("Error in Demucs script:", e.stderr.decode())
# return None
# try:
# # Separating the stems using your custom separator
# separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=use_cuda, output_format='mp3')
# primary_stem_path, secondary_stem_path = separator.separate()
# except Exception as e:
# print("Error in custom separation:", str(e))
# return None
# # Collecting all file paths
# files = [f"./out/htdemucs_6s/test/{stem}.wav" for stem in ["vocals", "bass", "drums", "other", "piano", "guitar"]]
# files.extend([secondary_stem_path,primary_stem_path ])
# # Check if files exist
# existing_files = [file for file in files if os.path.isfile(file)]
# if not existing_files:
# print("No files were created.")
# return None
# return existing_files
# # Gradio Interface
# title = "Source Separation Demo"
# description = "Music Source Separation in the Waveform Domain. To use it, simply upload your audio."
# gr.Interface(
# inference,
# gr.components.Audio(type="numpy", label="Input"),
# [gr.components.Audio(type="filepath", label=stem) for stem in ["Full Vocals","Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals" ]],
# title=title,
# description=description,
# ).launch()
import os
import gradio as gr
from scipy.io.wavfile import write
import subprocess
import torch
# Assuming audio_separator is available in your environment
from audio_separator import Separator
def inference(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals):
os.makedirs("out", exist_ok=True)
audio_path = 'test.wav'
write(audio_path, audio[0], audio[1])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
try:
command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out"
process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
print("Demucs script output:", process.stdout.decode())
except subprocess.CalledProcessError as e:
print("Error in Demucs script:", e.stderr.decode())
return [gr.Audio(visible=False)] * 8 + ["Failed to process audio."]
try:
separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=device=='cuda', output_format='wav')
primary_stem_path, secondary_stem_path = separator.separate()
except Exception as e:
print("Error in custom separation:", str(e))
return [gr.Audio(visible=False)] * 8 + ["Failed to process audio."]
stem_paths = {
"vocals": "./out/htdemucs_6s/test/vocals.wav" if vocals else None,
"bass": "./out/htdemucs_6s/test/bass.wav" if bass else None,
"drums": "./out/htdemucs_6s/test/drums.wav" if drums else None,
"other": "./out/htdemucs_6s/test/other.wav" if other else None,
"piano": "./out/htdemucs_6s/test/piano.wav" if piano else None,
"guitar": "./out/htdemucs_6s/test/guitar.wav" if guitar else None,
"lead_vocals": primary_stem_path if lead_vocals else None,
"backing_vocals": secondary_stem_path if backing_vocals else None
}
return tuple([gr.Audio(stem_paths[stem], visible=bool(stem_paths[stem])) for stem in stem_paths]) + ("Done! Successfully processed.",)
# Define checkboxes for each stem
checkbox_labels = ["Full Vocals", "Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals"]
checkboxes = [gr.components.Checkbox(label=label) for label in checkbox_labels]
# Gradio Interface
title = "Source Separation Demo"
description = "Music Source Separation in the Waveform Domain. Upload your audio to begin."
iface = gr.Interface(
inference,
[gr.components.Audio(type="numpy", label="Input")] + checkboxes,
[gr.Audio(label=label, visible=False) for label in checkbox_labels] + [gr.Label()],
title=title,
description=description,
)
iface.launch()
|