Pecorized's picture
updated image loading
00aa15b
raw
history blame
8.11 kB
# import os
# import gradio as gr
# from scipy.io.wavfile import write
# import subprocess
# import torch
# from audio_separator import Separator # Ensure this is correctly implemented
# def inference(audio):
# os.makedirs("out", exist_ok=True)
# audio_path = 'test.wav'
# write(audio_path, audio[0], audio[1])
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# if device=='cuda':
# use_cuda=True
# print(f"Using device: {device}")
# else:
# use_cuda=False
# print(f"Using device: {device}")
# try:
# # Using subprocess.run for better control
# command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out"
# process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# print("Demucs script output:", process.stdout.decode())
# except subprocess.CalledProcessError as e:
# print("Error in Demucs script:", e.stderr.decode())
# return None
# try:
# # Separating the stems using your custom separator
# separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=use_cuda, output_format='mp3')
# primary_stem_path, secondary_stem_path = separator.separate()
# except Exception as e:
# print("Error in custom separation:", str(e))
# return None
# # Collecting all file paths
# files = [f"./out/htdemucs_6s/test/{stem}.wav" for stem in ["vocals", "bass", "drums", "other", "piano", "guitar"]]
# files.extend([secondary_stem_path,primary_stem_path ])
# # Check if files exist
# existing_files = [file for file in files if os.path.isfile(file)]
# if not existing_files:
# print("No files were created.")
# return None
# return existing_files
# # Gradio Interface
# title = "Source Separation Demo"
# description = "Music Source Separation in the Waveform Domain. To use it, simply upload your audio."
# gr.Interface(
# inference,
# gr.components.Audio(type="numpy", label="Input"),
# [gr.components.Audio(type="filepath", label=stem) for stem in ["Full Vocals","Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals" ]],
# title=title,
# description=description,
# ).launch()
# import os
# import gradio as gr
# from scipy.io.wavfile import write
# import subprocess
# import torch
# # Assuming audio_separator is available in your environment
# from audio_separator import Separator
# def inference(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals):
# os.makedirs("out", exist_ok=True)
# audio_path = 'test.wav'
# write(audio_path, audio[0], audio[1])
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# print(f"Using device: {device}")
# if device=='cuda':
# use_cuda=True
# print(f"Using device: {device}")
# else:
# use_cuda=False
# print(f"Using device: {device}")
# try:
# command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out"
# process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# print("Demucs script output:", process.stdout.decode())
# except subprocess.CalledProcessError as e:
# print("Error in Demucs script:", e.stderr.decode())
# return [gr.Audio(visible=False)] * 8
# try:
# separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=device==use_cuda, output_format='wav')
# primary_stem_path, secondary_stem_path = separator.separate()
# except Exception as e:
# print("Error in custom separation:", str(e))
# return [gr.Audio(visible=False)] * 8
# stem_paths = {
# "vocals": "./out/htdemucs_6s/test/vocals.wav" if vocals else None,
# "bass": "./out/htdemucs_6s/test/bass.wav" if bass else None,
# "drums": "./out/htdemucs_6s/test/drums.wav" if drums else None,
# "other": "./out/htdemucs_6s/test/other.wav" if other else None,
# "piano": "./out/htdemucs_6s/test/piano.wav" if piano else None,
# "guitar": "./out/htdemucs_6s/test/guitar.wav" if guitar else None,
# "lead_vocals": primary_stem_path if lead_vocals else None,
# "backing_vocals": secondary_stem_path if backing_vocals else None
# }
# return [gr.Audio(stem_paths[stem], visible=bool(stem_paths[stem])) for stem in stem_paths]
# # Define checkboxes for each stem
# checkbox_labels = ["Full Vocals", "Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals"]
# checkboxes = [gr.components.Checkbox(label=label) for label in checkbox_labels]
# # Gradio Interface
# title = "Source Separation Demo"
# description = "Music Source Separation in the Waveform Domain. Upload your audio to begin."
# iface = gr.Interface(
# inference,
# [gr.components.Audio(type="numpy", label="Input")] + checkboxes,
# [gr.Audio(label=label, visible=False) for label in checkbox_labels],
# title=title,
# description=description,
# )
# iface.launch()
import os
import gradio as gr
from scipy.io.wavfile import write
import subprocess
import torch
# Assuming audio_separator is available in your environment
from audio_separator import Separator
def inference(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals):
# Initially, show the loading GIF
loading_gif_path = "7RwF.gif"
transparent_img_path = "images.png"
os.makedirs("out", exist_ok=True)
audio_path = 'test.wav'
write(audio_path, audio[0], audio[1])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
try:
command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out"
process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
print("Demucs script output:", process.stdout.decode())
except subprocess.CalledProcessError as e:
print("Error in Demucs script:", e.stderr.decode())
return [gr.Audio(visible=False)] * 8 + [loading_gif_path]
try:
separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=device=='cuda', output_format='wav')
primary_stem_path, secondary_stem_path = separator.separate()
except Exception as e:
print("Error in custom separation:", str(e))
return [gr.Audio(visible=False)] * 8 + [loading_gif_path]
stem_paths = {
"vocals": "./out/htdemucs_6s/test/vocals.wav" if vocals else None,
"bass": "./out/htdemucs_6s/test/bass.wav" if bass else None,
"drums": "./out/htdemucs_6s/test/drums.wav" if drums else None,
"other": "./out/htdemucs_6s/test/other.wav" if other else None,
"piano": "./out/htdemucs_6s/test/piano.wav" if piano else None,
"guitar": "./out/htdemucs_6s/test/guitar.wav" if guitar else None,
"lead_vocals": primary_stem_path if lead_vocals else None,
"backing_vocals": secondary_stem_path if backing_vocals else None
}
# Once processing is done, hide the GIF by returning a transparent image
return [gr.Audio(stem_paths[stem], visible=bool(stem_paths[stem])) for stem in stem_paths] + [transparent_img_path]
# Define checkboxes for each stem
checkbox_labels = ["Full Vocals", "Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals"]
checkboxes = [gr.components.Checkbox(label=label) for label in checkbox_labels]
# Gradio Interface
title = "Source Separation Demo"
description = "Music Source Separation in the Waveform Domain. Upload your audio to begin."
iface = gr.Interface(
inference,
[gr.components.Audio(type="numpy", label="Input")] + checkboxes,
[gr.Audio(label=label, visible=False) for label in checkbox_labels] + [gr.Image()],
title=title,
description=description,
)
iface.launch()