# import os # import gradio as gr # from scipy.io.wavfile import write # import subprocess # import torch # from audio_separator import Separator # Ensure this is correctly implemented # def inference(audio): # os.makedirs("out", exist_ok=True) # audio_path = 'test.wav' # write(audio_path, audio[0], audio[1]) # device = 'cuda' if torch.cuda.is_available() else 'cpu' # if device=='cuda': # use_cuda=True # print(f"Using device: {device}") # else: # use_cuda=False # print(f"Using device: {device}") # try: # # Using subprocess.run for better control # command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out" # process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # print("Demucs script output:", process.stdout.decode()) # except subprocess.CalledProcessError as e: # print("Error in Demucs script:", e.stderr.decode()) # return None # try: # # Separating the stems using your custom separator # separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=use_cuda, output_format='mp3') # primary_stem_path, secondary_stem_path = separator.separate() # except Exception as e: # print("Error in custom separation:", str(e)) # return None # # Collecting all file paths # files = [f"./out/htdemucs_6s/test/{stem}.wav" for stem in ["vocals", "bass", "drums", "other", "piano", "guitar"]] # files.extend([secondary_stem_path,primary_stem_path ]) # # Check if files exist # existing_files = [file for file in files if os.path.isfile(file)] # if not existing_files: # print("No files were created.") # return None # return existing_files # # Gradio Interface # title = "Source Separation Demo" # description = "Music Source Separation in the Waveform Domain. To use it, simply upload your audio." # gr.Interface( # inference, # gr.components.Audio(type="numpy", label="Input"), # [gr.components.Audio(type="filepath", label=stem) for stem in ["Full Vocals","Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals" ]], # title=title, # description=description, # ).launch() # import os # import gradio as gr # from scipy.io.wavfile import write # import subprocess # import torch # # Assuming audio_separator is available in your environment # from audio_separator import Separator # def inference(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals): # # Initially, show the loading GIF # loading_gif_path = "7RwF.gif" # gr.Image(loading_gif_path,visible=True) # os.makedirs("out", exist_ok=True) # audio_path = 'test.wav' # write(audio_path, audio[0], audio[1]) # device = 'cuda' if torch.cuda.is_available() else 'cpu' # print(f"Using device: {device}") # try: # command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out" # process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # print("Demucs script output:", process.stdout.decode()) # except subprocess.CalledProcessError as e: # print("Error in Demucs script:", e.stderr.decode()) # return [gr.Audio(visible=False)] * 8 + [loading_gif_path] # try: # separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=device=='cuda', output_format='wav') # primary_stem_path, secondary_stem_path = separator.separate() # except Exception as e: # print("Error in custom separation:", str(e)) # return [gr.Audio(visible=False)] * 8 + [loading_gif_path] # stem_paths = { # "vocals": "./out/htdemucs_6s/test/vocals.wav" if vocals else None, # "bass": "./out/htdemucs_6s/test/bass.wav" if bass else None, # "drums": "./out/htdemucs_6s/test/drums.wav" if drums else None, # "other": "./out/htdemucs_6s/test/other.wav" if other else None, # "piano": "./out/htdemucs_6s/test/piano.wav" if piano else None, # "guitar": "./out/htdemucs_6s/test/guitar.wav" if guitar else None, # "lead_vocals": primary_stem_path if lead_vocals else None, # "backing_vocals": secondary_stem_path if backing_vocals else None # } # # Once processing is done, hide the GIF by returning a transparent image # gr.Image(visible=False) # return [gr.Audio(stem_paths[stem], visible=bool(stem_paths[stem])) for stem in stem_paths] # # Define checkboxes for each stem # checkbox_labels = ["Full Vocals", "Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals"] # checkboxes = [gr.components.Checkbox(label=label) for label in checkbox_labels] # # Gradio Interface # title = "Source Separation Demo" # description = "Music Source Separation in the Waveform Domain. Upload your audio to begin." # iface = gr.Interface( # inference, # [gr.components.Audio(type="numpy", label="Input")] + checkboxes, # [gr.Audio(label=label, visible=False) for label in checkbox_labels], # title=title, # description=description, # ) # iface.launch() import os import gradio as gr from scipy.io.wavfile import write import subprocess import torch # Assuming audio_separator is available in your environment from audio_separator import Separator # Global variable to track the display state of the GIF show_loading_gif = True def start_loading(): global show_loading_gif show_loading_gif = True def stop_loading(): global show_loading_gif show_loading_gif = False def process_audio(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals): # Audio processing logic os.makedirs("out", exist_ok=True) audio_path = 'test.wav' write(audio_path, audio[0], audio[1]) device = 'cuda' if torch.cuda.is_available() else 'cpu' try: command = f"python3 -m demucs.separate -n htdemucs_6s -d {device} {audio_path} -o out" process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: return None # Handle the error appropriately try: separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=device=='cuda', output_format='wav') primary_stem_path, secondary_stem_path = separator.separate() except Exception as e: return None # Handle the error appropriately # Generate paths for the stems stem_paths = { "vocals": "./out/htdemucs_6s/test/vocals.wav" if vocals else None, "bass": "./out/htdemucs_6s/test/bass.wav" if bass else None, "drums": "./out/htdemucs_6s/test/drums.wav" if drums else None, "other": "./out/htdemucs_6s/test/other.wav" if other else None, "piano": "./out/htdemucs_6s/test/piano.wav" if piano else None, "guitar": "./out/htdemucs_6s/test/guitar.wav" if guitar else None, "lead_vocals": primary_stem_path if lead_vocals else None, "backing_vocals": secondary_stem_path if backing_vocals else None } return [stem_paths[stem] for stem in stem_paths] def inference(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals): global show_loading_gif # Start loading start_loading() # Call the main processing function audio_outputs = process_audio(audio, vocals, bass, drums, other, piano, guitar, lead_vocals, backing_vocals) # Stop loading stop_loading() # Return the outputs along with the loading GIF state loading_gif_path = "7RwF.gif" if show_loading_gif else "" return loading_gif_path, audio_outputs # Define checkboxes for each stem checkbox_labels = ["Full Vocals", "Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Backing Vocals"] checkboxes = [gr.components.Checkbox(label=label) for label in checkbox_labels] # Gradio Interface title = "Source Separation Demo" description = "Music Source Separation in the Waveform Domain. Upload your audio to begin." iface = gr.Interface( inference, [gr.components.Audio(type="numpy", label="Input")] + checkboxes, [gr.Image(), [gr.Audio(label=label, visible=False) for label in checkbox_labels]], title=title, description=description, ) iface.launch()