File size: 17,423 Bytes
9d2fc55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import cv2 
import numpy as np
import psutil

from roop.ProcessOptions import ProcessOptions

from roop.face_util import get_first_face, get_all_faces, rotate_image_180
from roop.utilities import compute_cosine_distance, get_device, str_to_class

from typing import Any, List, Callable
from roop.typing import Frame
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread, Lock
from queue import Queue
from tqdm import tqdm
from roop.ffmpeg_writer import FFMPEG_VideoWriter
import roop.globals


def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
    queue: Queue[str] = Queue()
    for frame_path in temp_frame_paths:
        queue.put(frame_path)
    return queue


def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
    queues = []
    for _ in range(queue_per_future):
        if not queue.empty():
            queues.append(queue.get())
    return queues


class ProcessMgr():
    input_face_datas = []
    target_face_datas = []

    processors = []
    options : ProcessOptions = None
    
    num_threads = 1
    current_index = 0
    processing_threads = 1
    buffer_wait_time = 0.1

    lock = Lock()

    frames_queue = None
    processed_queue = None

    videowriter= None

    progress_gradio = None
    total_frames = 0

    


    plugins =  { 
    'faceswap'      : 'FaceSwapInsightFace',
    'mask_clip2seg' : 'Mask_Clip2Seg',
    'codeformer'    : 'Enhance_CodeFormer',
    'gfpgan'        : 'Enhance_GFPGAN',
    'dmdnet'        : 'Enhance_DMDNet',
    'gpen'          : 'Enhance_GPEN',
    }

    def __init__(self, progress):
        if progress is not None:
            self.progress_gradio = progress


    def initialize(self, input_faces, target_faces, options):
        self.input_face_datas = input_faces
        self.target_face_datas = target_faces
        self.options = options

        processornames = options.processors.split(",")
        devicename = get_device()
        if len(self.processors) < 1:
            for pn in processornames:
                classname = self.plugins[pn]
                module = 'roop.processors.' + classname
                p = str_to_class(module, classname)
                p.Initialize(devicename)
                self.processors.append(p)
        else:
            for i in range(len(self.processors) -1, -1, -1):
                if not self.processors[i].processorname in processornames:
                    self.processors[i].Release()
                    del self.processors[i]

            for i,pn in enumerate(processornames):
                if i >= len(self.processors) or self.processors[i].processorname != pn:
                    p = None
                    classname = self.plugins[pn]
                    module = 'roop.processors.' + classname
                    p = str_to_class(module, classname)
                    p.Initialize(devicename)
                    if p is not None:
                        self.processors.insert(i, p)



    def run_batch(self, source_files, target_files, threads:int = 1):
        progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
        self.total_frames = len(source_files)
        self.num_threads = threads
        with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
            with ThreadPoolExecutor(max_workers=threads) as executor:
                futures = []
                queue = create_queue(source_files)
                queue_per_future = max(len(source_files) // threads, 1)
                while not queue.empty():
                    future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
                    futures.append(future)
                for future in as_completed(futures):
                    future.result()


    def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
        for f in current_files:
            if not roop.globals.processing:
                return
            
            temp_frame = cv2.imread(f)
            if temp_frame is not None:
                resimg = self.process_frame(temp_frame)
                if resimg is not None:
                    i = source_files.index(f)
                    cv2.imwrite(target_files[i], resimg)
            if update:
                update()



    def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
        num_frame = 0
        total_num = frame_end - frame_start
        if frame_start > 0:
            cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)

        while True and roop.globals.processing:
            ret, frame = cap.read()
            if not ret:
                break
                
            self.frames_queue[num_frame % num_threads].put(frame, block=True)
            num_frame += 1
            if num_frame == total_num:
                break

        for i in range(num_threads):
            self.frames_queue[i].put(None)



    def process_videoframes(self, threadindex, progress) -> None:
        while True:
            frame = self.frames_queue[threadindex].get()
            if frame is None:
                self.processing_threads -= 1
                self.processed_queue[threadindex].put((False, None))
                return
            else:
                resimg = self.process_frame(frame)
                self.processed_queue[threadindex].put((True, resimg))
                del frame
                progress()


    def write_frames_thread(self):
        nextindex = 0
        num_producers = self.num_threads
        
        while True:
            process, frame = self.processed_queue[nextindex % self.num_threads].get()
            nextindex += 1
            if frame is not None:
                self.videowriter.write_frame(frame)
                del frame
            elif process == False:
                num_producers -= 1
                if num_producers < 1:
                    return
            


    def run_batch_inmem(self, source_video, target_video, frame_start, frame_end, fps, threads:int = 1, skip_audio=False):
        cap = cv2.VideoCapture(source_video)
        # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_count = (frame_end - frame_start) + 1
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        self.total_frames = frame_count
        self.num_threads = threads

        self.processing_threads = self.num_threads
        self.frames_queue = []
        self.processed_queue = []
        for _ in range(threads):
            self.frames_queue.append(Queue(1))
            self.processed_queue.append(Queue(1))

        self.videowriter =  FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)

        readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
        readthread.start()

        writethread = Thread(target=self.write_frames_thread)
        writethread.start()

        progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
        with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
            with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
                futures = []
                
                for threadindex in range(threads):
                    future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
                    futures.append(future)
                
                for future in as_completed(futures):
                    future.result()
        # wait for the task to complete
        readthread.join()
        writethread.join()
        cap.release()
        self.videowriter.close()
        self.frames_queue.clear()
        self.processed_queue.clear()




    def update_progress(self, progress: Any = None) -> None:
        process = psutil.Process(os.getpid())
        memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
        msg = 'memory_usage: ' + '{:.2f}'.format(memory_usage).zfill(5) + f' GB execution_threads {self.num_threads}'
        progress.set_postfix({
            'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
            'execution_threads': self.num_threads
        })
        progress.update(1)
        self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')


    def on_no_face_action(self, frame:Frame):
        if roop.globals.no_face_action == 0:
            return None, frame
        elif roop.globals.no_face_action == 2:
            return None, None

        
        faces = get_all_faces(frame)
        if faces is not None:
            return faces, frame
        return None, frame
      



    def process_frame(self, frame:Frame):
        if len(self.input_face_datas) < 1:
            return frame
    
        temp_frame = frame.copy()
        num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
        if num_swapped > 0:
            return temp_frame
        if roop.globals.no_face_action == 0:
            return frame
        if roop.globals.no_face_action == 2:
            return None
        else:
            copyframe = frame.copy()
            copyframe = rotate_image_180(copyframe)
            temp_frame = copyframe.copy()
            num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
            if num_swapped == 0:
                return frame
            temp_frame = rotate_image_180(temp_frame)
            return temp_frame



    def swap_faces(self, frame, temp_frame):
        num_faces_found = 0
        if self.options.swap_mode == "first":
            face = get_first_face(frame)
            if face is None:
                return num_faces_found, frame
            num_faces_found += 1
            temp_frame = self.process_face(self.options.selected_index, face, temp_frame)

        else:
            faces = get_all_faces(frame)
            if faces is None:
                return num_faces_found, frame
            
            if self.options.swap_mode == "all":
                for face in faces:
                    num_faces_found += 1
                    temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
                    del face
            
            elif self.options.swap_mode == "selected":
                for i,tf in enumerate(self.target_face_datas):
                    for face in faces:
                        if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
                            if i < len(self.input_face_datas):
                                temp_frame = self.process_face(i, face, temp_frame)
                                num_faces_found += 1
                            break
                        del face
            elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
                gender = 'F' if self.options.swap_mode == "all_female" else 'M'
                for face in faces:
                    if face.sex == gender:
                        num_faces_found += 1
                        temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
                    del face

        if num_faces_found == 0:
            return num_faces_found, frame

        maskprocessor = next((x for x in self.processors if x.processorname == 'clip2seg'), None)
        if maskprocessor is not None:
            temp_frame = self.process_mask(maskprocessor, frame, temp_frame)
        return num_faces_found, temp_frame


    def process_face(self,face_index, target_face, frame:Frame):
        enhanced_frame = None
        inputface = self.input_face_datas[face_index].faces[0]

        for p in self.processors:
            if p.type == 'swap':
                fake_frame = p.Run(inputface, target_face, frame)
                scale_factor = 0.0
            elif p.type == 'mask':
                continue
            else:
                enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)

        upscale = 512
        orig_width = fake_frame.shape[1]
        fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
        mask_offsets = inputface.mask_offsets
        
        if enhanced_frame is None:
            scale_factor = int(upscale / orig_width)
            result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
        else:
            result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
        return result

        


    def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
        if start_x < 0:
            start_x = 0
        if start_y < 0:
            start_y = 0
        if end_x > frame.shape[1]:
            end_x = frame.shape[1]
        if end_y > frame.shape[0]:
            end_y = frame.shape[0]
        return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y

        
    
    # Paste back adapted from here
    # https://github.com/fAIseh00d/refacer/blob/main/refacer.py
    # which is revised insightface paste back code

    def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
        M_scale = M * scale_factor
        IM = cv2.invertAffineTransform(M_scale)

        face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
        ##Generate white square sized as a upsk_face
        img_matte = np.full((upsk_face.shape[0],upsk_face.shape[1]), 255, dtype=np.uint8)
        if mask_offsets[0] > 0:
            img_matte[:mask_offsets[0],:] = 0
        if mask_offsets[1] > 0:
            img_matte[-mask_offsets[1]:,:] = 0

        ##Transform white square back to target_img
        img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0) 
        ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
        img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0

        #Detect the affine transformed white area
        mask_h_inds, mask_w_inds = np.where(img_matte==255) 
        #Calculate the size (and diagonal size) of transformed white area width and height boundaries
        mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) 
        mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
        mask_size = int(np.sqrt(mask_h*mask_w))
        #Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
        # k = max(mask_size//12, 8)
        k = max(mask_size//10, 10)
        kernel = np.ones((k,k),np.uint8)
        img_matte = cv2.erode(img_matte,kernel,iterations = 1)
        #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
        # k = max(mask_size//24, 4) 
        k = max(mask_size//20, 5) 
        kernel_size = (k, k)
        blur_size = tuple(2*i+1 for i in kernel_size)
        img_matte = cv2.GaussianBlur(img_matte, blur_size, 0)
        
        #Normalize images to float values and reshape
        img_matte = img_matte.astype(np.float32)/255
        face_matte = face_matte.astype(np.float32)/255
        img_matte = np.minimum(face_matte, img_matte)
        img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1]) 
        ##Transform upcaled face back to target_img
        paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
        if upsk_face is not fake_face:
            fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
            paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)

        ##Re-assemble image
        paste_face = img_matte * paste_face
        paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
        del img_matte
        del face_matte
        del upsk_face
        del fake_face
        return paste_face.astype(np.uint8)


    def process_mask(self, processor, frame:Frame, target:Frame):
        img_mask = processor.Run(frame, self.options.masking_text)
        img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
        img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])

        target = target.astype(np.float32)
        result = (1-img_mask) * target
        result += img_mask * frame.astype(np.float32)
        return np.uint8(result)

            


    def unload_models():
        pass


    def release_resources(self):
        for p in self.processors:
            p.Release()
        self.processors.clear()