File size: 9,765 Bytes
9d2fc55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import threading
from typing import Any
import insightface

import roop.globals
from roop.typing import Frame, Face

import cv2
import numpy as np
from skimage import transform as trans
from roop.capturer import get_video_frame
from roop.utilities import resolve_relative_path, conditional_download

FACE_ANALYSER = None
THREAD_LOCK_ANALYSER = threading.Lock()
THREAD_LOCK_SWAPPER = threading.Lock()
FACE_SWAPPER = None


def get_face_analyser() -> Any:
    global FACE_ANALYSER

    with THREAD_LOCK_ANALYSER:
        if FACE_ANALYSER is None:
            if roop.globals.CFG.force_cpu:
                print('Forcing CPU for Face Analysis')
                FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider'])
            else:
                FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
            FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640) if roop.globals.default_det_size else (320,320))
    return FACE_ANALYSER


def get_first_face(frame: Frame) -> Any:
    try:
        faces = get_face_analyser().get(frame)
        return min(faces, key=lambda x: x.bbox[0])
    #   return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0]
    except:
        return None


def get_all_faces(frame: Frame) -> Any:
    try:
        faces = get_face_analyser().get(frame)
        return sorted(faces, key = lambda x : x.bbox[0])
    except:
        return None


def extract_face_images(source_filename, video_info, extra_padding=-1.0):
    face_data = []
    source_image = None
    
    if video_info[0]:
        frame = get_video_frame(source_filename, video_info[1])
        if frame is not None:
            source_image = frame
        else:
            return face_data
    else:
        source_image = cv2.imread(source_filename)
        
    faces = get_all_faces(source_image)
    if faces is None:
        return face_data

    i = 0
    for face in faces:
        (startX, startY, endX, endY) = face['bbox'].astype("int")
        if extra_padding > 0.0:
            if source_image.shape[:2] == (512,512):
                i += 1
                face_data.append([face, source_image])
                continue

            found = False
            for i in range(1,3):
                (startX, startY, endX, endY) = face['bbox'].astype("int")
                cutout_padding = extra_padding
                # top needs extra room for detection
                padding = int((endY - startY) * cutout_padding)
                oldY = startY
                startY -= padding

                factor = 0.25 if i == 1 else 0.5
                cutout_padding = factor
                padding = int((endY - oldY) * cutout_padding)
                endY += padding
                padding = int((endX - startX) * cutout_padding)
                startX -= padding
                endX += padding
                startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
                face_temp = source_image[startY:endY, startX:endX]
                face_temp = resize_image_keep_content(face_temp)
                testfaces = get_all_faces(face_temp)
                if testfaces is not None and len(testfaces) > 0:
                    i += 1
                    face_data.append([testfaces[0], face_temp])
                    found = True
                    break

            if not found:
                print("No face found after resizing, this shouldn't happen!")
            continue
        

        face_temp = source_image[startY:endY, startX:endX]
        if face_temp.size < 1:
            continue

        i += 1
        face_data.append([face, face_temp])
    return face_data

def clamp_cut_values(startX, endX, startY, endY, image):
    if startX < 0:
        startX = 0
    if endX > image.shape[1]:
        endX = image.shape[1]
    if startY < 0:
        startY = 0
    if endY > image.shape[0]:
        endY = image.shape[0]
    return startX, endX, startY, endY



def get_face_swapper() -> Any:
    global FACE_SWAPPER

    with THREAD_LOCK_SWAPPER:
        if FACE_SWAPPER is None:
            model_path = resolve_relative_path('../models/inswapper_128.onnx')
            FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers)
    return FACE_SWAPPER


def pre_check() -> bool:
    download_directory_path = resolve_relative_path('../models')
    conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
    return True


def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
    return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)

def face_offset_top(face: Face, offset):
    smallestmin = np.min(face.landmark_2d_106, 1)
    smallest = smallestmin[1]
    face['bbox'][1] += offset
    face['bbox'][3] += offset
    lm106 = face.landmark_2d_106
    add = np.full_like(lm106, [0, offset])
    face['landmark_2d_106'] = lm106 + add
    return face


def resize_image_keep_content(image, new_width=512, new_height=512):
    dim = None
    (h, w) = image.shape[:2]
    if h > w:
        r = new_height / float(h)
        dim = (int(w * r), new_height)
    else:
        # Calculate the ratio of the width and construct the dimensions
        r = new_width / float(w)
        dim = (new_width, int(h * r))
    image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    (h, w) = image.shape[:2]
    if h == new_height and w == new_width:
        return image
    resize_img = np.zeros(shape=(new_height,new_width,3), dtype=image.dtype)
    offs = (new_width - w) if h == new_height else (new_height - h)
    startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1
    offs = int(offs // 2) 
    
    if h == new_height:
        resize_img[0:new_height, startoffs:new_width-offs] = image
    else:
        resize_img[startoffs:new_height-offs, 0:new_width] = image
    return resize_img


def rotate_image_90(image, rotate=True):
    if rotate:
        return np.rot90(image)
    else:
        return np.rot90(image,1,(1,0))
    
def rotate_image_180(image):
    return np.flip(image,0)


# alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py

arcface_dst = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)

def estimate_norm(lmk, image_size=112,mode='arcface'):
    assert lmk.shape == (5, 2)
    assert image_size%112==0 or image_size%128==0
    if image_size%112==0:
        ratio = float(image_size)/112.0
        diff_x = 0
    else:
        ratio = float(image_size)/128.0
        diff_x = 8.0*ratio
    dst = arcface_dst * ratio
    dst[:,0] += diff_x
    tform = trans.SimilarityTransform()
    tform.estimate(lmk, dst)
    M = tform.params[0:2, :]
    return M

def norm_crop(img, landmark, image_size=112, mode='arcface'):
    M = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
    return warped

# aligned, M = norm_crop2(f[1], face.kps, 512)
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
    M = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
    return warped, M

def square_crop(im, S):
    if im.shape[0] > im.shape[1]:
        height = S
        width = int(float(im.shape[1]) / im.shape[0] * S)
        scale = float(S) / im.shape[0]
    else:
        width = S
        height = int(float(im.shape[0]) / im.shape[1] * S)
        scale = float(S) / im.shape[1]
    resized_im = cv2.resize(im, (width, height))
    det_im = np.zeros((S, S, 3), dtype=np.uint8)
    det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
    return det_im, scale


def transform(data, center, output_size, scale, rotation):
    scale_ratio = scale
    rot = float(rotation) * np.pi / 180.0
    #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
    t1 = trans.SimilarityTransform(scale=scale_ratio)
    cx = center[0] * scale_ratio
    cy = center[1] * scale_ratio
    t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
    t3 = trans.SimilarityTransform(rotation=rot)
    t4 = trans.SimilarityTransform(translation=(output_size / 2,
                                                output_size / 2))
    t = t1 + t2 + t3 + t4
    M = t.params[0:2]
    cropped = cv2.warpAffine(data,
                             M, (output_size, output_size),
                             borderValue=0.0)
    return cropped, M


def trans_points2d(pts, M):
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        #print('new_pt', new_pt.shape, new_pt)
        new_pts[i] = new_pt[0:2]

    return new_pts


def trans_points3d(pts, M):
    scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
    #print(scale)
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        #print('new_pt', new_pt.shape, new_pt)
        new_pts[i][0:2] = new_pt[0:2]
        new_pts[i][2] = pts[i][2] * scale

    return new_pts


def trans_points(pts, M):
    if pts.shape[1] == 2:
        return trans_points2d(pts, M)
    else:
        return trans_points3d(pts, M)