HYDRAS_flux2 / app.py
salomonsky's picture
Update app.py
3373fee verified
raw
history blame
4.19 kB
import gradio as gr
import os
from gradio_client import Client, handle_file
from huggingface_hub import login
from PIL import Image
import numpy as np
import random
from translatepy import Translator
import requests
import re
import asyncio
from gradio_imageslider import ImageSlider
hf_tkn = os.environ.get("HF_TKN")
login(hf_tkn)
translator = Translator()
basemodel = "black-forest-labs/FLUX.1-dev"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
def enable_lora(lora_add):
if not lora_add:
return basemodel
else:
return lora_add
def handle_file(img_path):
return Image.open(img_path)
def get_upscale_finegrain(prompt, img_path, upscale_factor):
if upscale_factor == 0:
return handle_file(img_path)
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="",
seed=42,
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
tile_width=112,
tile_height=144,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
print(result)
return result[1]
async def upscale_image(image, upscale_factor):
try:
result = get_upscale_finegrain(
prompt="",
img_path=image,
upscale_factor=upscale_factor
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return result
async def generate_image(
prompt:str,
model:str,
lora_word:str,
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1
):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f'prompt:{prompt}')
text = str(translator.translate(prompt, 'English')) + "," + lora_word
try:
image = gr.Image(type="pil", image=gr.processing_utils.encode_pil_image(text_to_image(text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)))
except Exception as e:
raise gr.Error(f"Error in {e}")
return image, seed
async def gen(
prompt:str,
lora_add:str="XLabs-AI/flux-RealismLora",
lora_word:str="",
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1,
upscale_factor:int=0
):
model = enable_lora(lora_add)
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
upscaled_image = await upscale_image(image, upscale_factor)
return upscaled_image, seed
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600)
with gr.Row():
prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6)
sendBtn = gr.Button(scale=1, variant='primary')
with gr.Accordion("Opciones avanzadas", open=True):
with gr.Column(scale=1):
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=768)
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=1024)
scales = gr.Slider(label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5)
steps = gr.Slider(label="Pasos", minimum=1, maximum=50, step=1)
upscale_factor = gr.Slider(label="Factor de escala", minimum=0, maximum=4, step=1, value=0)
seed = gr.Number(label="Semilla", value=-1)
sendBtn.click(gen, inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], outputs=[img])
demo.launch()