Spaces:
Running
Running
import gradio as gr | |
import os | |
from gradio_client import Client, handle_file | |
from huggingface_hub import login | |
from PIL import Image | |
import numpy as np | |
import random | |
from translatepy import Translator | |
import requests | |
import re | |
import asyncio | |
from gradio_imageslider import ImageSlider | |
hf_tkn = os.environ.get("HF_TKN") | |
login(hf_tkn) | |
translator = Translator() | |
basemodel = "black-forest-labs/FLUX.1-dev" | |
MAX_SEED = np.iinfo(np.int32).max | |
CSS = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
JS = """function () { | |
gradioURL = window.location.href | |
if (!gradioURL.endsWith('?__theme=dark')) { | |
window.location.replace(gradioURL + '?__theme=dark'); | |
} | |
}""" | |
def enable_lora(lora_add): | |
if not lora_add: | |
return basemodel | |
else: | |
return lora_add | |
def handle_file(img_path): | |
return Image.open(img_path) | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
if upscale_factor == 0: | |
return handle_file(img_path) | |
client = Client("finegrain/finegrain-image-enhancer") | |
result = client.predict( | |
input_image=handle_file(img_path), | |
prompt=prompt, | |
negative_prompt="", | |
seed=42, | |
upscale_factor=upscale_factor, | |
controlnet_scale=0.6, | |
controlnet_decay=1, | |
condition_scale=6, | |
tile_width=112, | |
tile_height=144, | |
denoise_strength=0.35, | |
num_inference_steps=18, | |
solver="DDIM", | |
api_name="/process" | |
) | |
print(result) | |
return result[1] | |
async def upscale_image(image, upscale_factor): | |
try: | |
result = get_upscale_finegrain( | |
prompt="", | |
img_path=image, | |
upscale_factor=upscale_factor | |
) | |
except Exception as e: | |
raise gr.Error(f"Error in {e}") | |
return result | |
async def generate_image( | |
prompt:str, | |
model:str, | |
lora_word:str, | |
width:int=768, | |
height:int=1024, | |
scales:float=3.5, | |
steps:int=24, | |
seed:int=-1 | |
): | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
print(f'prompt:{prompt}') | |
text = str(translator.translate(prompt, 'English')) + "," + lora_word | |
try: | |
image = gr.Image(type="pil", image=gr.processing_utils.encode_pil_image(text_to_image(text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model))) | |
except Exception as e: | |
raise gr.Error(f"Error in {e}") | |
return image, seed | |
async def gen( | |
prompt:str, | |
lora_add:str="XLabs-AI/flux-RealismLora", | |
lora_word:str="", | |
width:int=768, | |
height:int=1024, | |
scales:float=3.5, | |
steps:int=24, | |
seed:int=-1, | |
upscale_factor:int=0 | |
): | |
model = enable_lora(lora_add) | |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed) | |
upscaled_image = await upscale_image(image, upscale_factor) | |
return upscaled_image, seed | |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<h1><center>Flux Lab Light</center></h1>") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600) | |
with gr.Row(): | |
prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6) | |
sendBtn = gr.Button(scale=1, variant='primary') | |
with gr.Accordion("Opciones avanzadas", open=True): | |
with gr.Column(scale=1): | |
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=768) | |
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=1024) | |
scales = gr.Slider(label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5) | |
steps = gr.Slider(label="Pasos", minimum=1, maximum=50, step=1) | |
upscale_factor = gr.Slider(label="Factor de escala", minimum=0, maximum=4, step=1, value=0) | |
seed = gr.Number(label="Semilla", value=-1) | |
sendBtn.click(gen, inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], outputs=[img]) | |
demo.launch() |