Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,623 Bytes
222e3bd e935ff6 ea6a933 83ebf46 ef93563 c79df46 ef93563 8871135 6f94cd7 74e078c f8e12ae 79e67e9 f2cf91b ef93563 8e17b76 79e67e9 3b01bbd f8e12ae 79e67e9 3b01bbd b975979 79e67e9 f2cf91b f70eab2 044fea4 f2cf91b 9366d4b 328b0e0 5f05fba b975979 c3f5c5f 79e67e9 191ddd5 f8e12ae b975979 f8e12ae 5c4653b f2cf91b 5c4653b a65b632 22b65d9 a65b632 477ec86 9366d4b f70eab2 044fea4 c1ee979 fdc4995 328b0e0 fdc4995 328b0e0 a65b632 22b65d9 9366d4b 328b0e0 5c4653b 1cd6967 74e078c 328b0e0 74e078c 328b0e0 74e078c f70eab2 74e078c 1ae721a dcbacca 76e9cbc 74e078c 76e9cbc 74e078c 328b0e0 af75fe2 328b0e0 4d2ffb1 74e078c af75fe2 74e078c 76e9cbc 294478a 4ea5474 294478a 191ddd5 74e078c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import sys
import requests
import json
from huggingface_hub import HfApi
# start xVASynth service (no HTTP)
import resources.app.no_server as xvaserver
from gr_client import BlocksDemo
# TODO: move snapshots to common folder & use an models array
# NVIDIA NeMo models
hf_model_name = "Pendrokar/xvapitch_nvidia"
model_repo = HfApi()
commits = model_repo.list_repo_commits(repo_id=hf_model_name)
latest_commit_sha = commits[0].commit_id
hf_cache_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/{latest_commit_sha}/'
models_path = hf_cache_models_path
# Expresso models
commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvapitch_expresso')
latest_commit_sha = commits[0].commit_id
hf_cache_expresso_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_expresso/snapshots/{latest_commit_sha}/'
# Lojban model
commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvasynth_lojban')
latest_commit_sha = commits[0].commit_id
hf_cache_lojban_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvasynth_lojban/snapshots/{latest_commit_sha}/'
# Robotic model
hf_cache_robotic_models_path = ''
try:
commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvasynth_cabal', token=os.getenv('HF_TOKEN'))
latest_commit_sha = commits[0].commit_id
hf_cache_robotic_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvasynth_cabal/snapshots/{latest_commit_sha}/'
except:
print('Robotic voice not loaded!')
pass
current_voice_model = None
current_voice_type = None
base_speaker_emb = ''
def load_model(voice_model_name):
global current_voice_model, current_voice_type, base_speaker_emb
if voice_model_name == 'x_selpahi':
# Lojban
model_path = hf_cache_lojban_models_path + voice_model_name
model_type = 'FastPitch1.1'
else:
model_path = models_path + voice_model_name
if voice_model_name == 'cnc_cabal':
model_path = hf_cache_robotic_models_path + voice_model_name
if voice_model_name[:5] == 'x_ex0':
model_path = hf_cache_expresso_models_path + voice_model_name
model_type = 'xVAPitch'
language = 'en' # seems to have no effect if generated text is for a different language
data = {
'outputs': None,
'version': '3.0',
'model': model_path,
'modelType': model_type,
'base_lang': language,
'pluginsContext': '{}',
}
print('Loading voice model...')
try:
json_data = xvaserver.loadModel(data)
current_voice_model = voice_model_name
current_voice_type = model_type
with open(model_path + '.json', 'r', encoding='utf-8') as f:
voice_model_json = json.load(f)
if model_type == 'xVAPitch':
base_speaker_emb = voice_model_json['games'][0]['base_speaker_emb']
elif model_type == 'FastPitch1.1':
base_speaker_emb = voice_model_json['games'][0]['resemblyzer']
except requests.exceptions.RequestException as err:
print(f'FAILED to load voice model: {err}')
return base_speaker_emb
class LocalBlocksDemo(BlocksDemo):
def predict(
self,
input_text,
voice,
lang,
pacing,
pitch,
energy,
anger,
happy,
sad,
surprise,
use_deepmoji
):
global current_voice_model, current_voice_type, base_speaker_emb
# grab only the first 1000 characters
input_text = input_text[:1000]
# load voice model if not the current model
if (current_voice_model != voice):
load_model(voice)
model_type = current_voice_type
pace = pacing if pacing else 1.0
save_path = '/tmp/xvapitch_audio_sample.wav'
language = lang
use_sr = 0
use_cleanup = 0
pluginsContext = {}
pluginsContext["mantella_settings"] = {
"emAngry": (anger if anger > 0 else 0),
"emHappy": (happy if happy > 0 else 0),
"emSad": (sad if sad > 0 else 0),
"emSurprise": (surprise if surprise > 0 else 0),
"run_model": use_deepmoji
}
data = {
'pluginsContext': json.dumps(pluginsContext),
'modelType': model_type,
# pad with whitespaces as a workaround to avoid cutoffs
'sequence': input_text.center(len(input_text) + 2, ' '),
'pace': pace,
'outfile': save_path,
'vocoder': 'n/a',
'base_lang': language,
'base_emb': base_speaker_emb,
'useSR': use_sr,
'useCleanup': use_cleanup,
}
print('Synthesizing...')
try:
json_data = xvaserver.synthesize(data)
# response = requests.post('http://0.0.0.0:8008/synthesize', json=data, timeout=60)
# response.raise_for_status() # If the response contains an HTTP error status code, raise an exception
# json_data = json.loads(response.text)
except requests.exceptions.RequestException as err:
print('FAILED to synthesize: {err}')
save_path = ''
response = {'text': '{"message": "Failed"}'}
json_data = {
'arpabet': ['Failed'],
'durations': [0],
'em_anger': anger,
'em_happy': happy,
'em_sad': sad,
'em_surprise': surprise,
}
# print('server.log contents:')
# with open('resources/app/server.log', 'r') as f:
# print(f.read())
arpabet_html = ''
if voice == 'x_selpahi':
em_angry = 0
em_happy = 0
em_sad = 0
em_surprise = 0
else:
arpabet_html = '<h6>ARPAbet & Durations</h6>'
arpabet_html += '<table style="margin: 0 var(--size-2)"><tbody><tr>'
arpabet_nopad = json_data['arpabet'].split('|PAD|')
arpabet_symbols = json_data['arpabet'].split('|')
wpad_len = len(arpabet_symbols)
nopad_len = len(arpabet_nopad)
total_dur_length = 0
for symb_i in range(wpad_len):
if (arpabet_symbols[symb_i] == '<PAD>'):
continue
total_dur_length += float(json_data['durations'][symb_i])
for symb_i in range(wpad_len):
if (arpabet_symbols[symb_i] == '<PAD>'):
continue
arpabet_length = float(json_data['durations'][symb_i])
cell_width = round(arpabet_length / total_dur_length * 100, 2)
arpabet_html += '<td class="arpabet" style="width: '\
+ str(cell_width)\
+'%">'\
+ arpabet_symbols[symb_i]\
+ '</td> '
arpabet_html += '<tr></tbody></table>'
if use_deepmoji:
em_angry = round(json_data['em_angry'][0], 2)
em_happy = round(json_data['em_happy'][0], 2)
em_sad = round(json_data['em_sad'][0], 2)
em_surprise = round(json_data['em_surprise'][0], 2)
else:
em_angry = anger
em_happy = happy
em_sad = sad
em_surprise = surprise
return [
save_path,
arpabet_html,
em_angry,
em_happy,
em_sad,
em_surprise,
json_data
]
if __name__ == "__main__":
print('running custom Gradio interface')
demo = LocalBlocksDemo(models_path, hf_cache_lojban_models_path, hf_cache_robotic_models_path, hf_cache_expresso_models_path)
demo.block.launch()
|