import gradio as gr import spaces from gradio_imageslider import ImageSlider from image_gen_aux import UpscaleWithModel from image_gen_aux.utils import load_image # This uses https://github.com/asomoza/image_gen_aux/blob/main/src/image_gen_aux/upscalers/README.md # Also this space has been duplicated from their official huggingface space, https://huggingface.co/spaces/OzzyGT/basic_upscaler # They did great work, and I was happy to see them to also use my models :) I thought Id duplicate it and extend it. # It basically made me get a pro account so I can make a Zero GPU space and made me upload a lot of my models on huggingface now so I can use them here ;) # My models MODELS = { "4xNomosWebPhoto_RealPLKSR": "Phips/4xNomosWebPhoto_RealPLKSR", "4xNomos2_hq_dat2": "Phips/4xNomos2_hq_dat2", "4xNomos2_hq_drct-l": "Phips/4xNomos2_hq_drct-l", "4xNomos2_hq_atd": "Phips/4xNomos2_hq_atd", "4xRealWebPhoto_v4_dat2": "Phips/4xRealWebPhoto_v4_dat2", "4xRealWebPhoto_v3_atd": "Phips/4xRealWebPhoto_v3_atd", "4xNomos8k_atd_jpg": "Phips/4xNomos8k_atd_jpg", "4xNomosUni_rgt_multijpg": "Phips/4xNomosUni_rgt_multijpg", "4xLSDIRDAT": "Phips/4xLSDIRDAT", "4xSSDIRDAT": "Phips/4xSSDIRDAT", "4xNomos2_otf_esrgan": "Phips/4xNomos2_otf_esrgan", "4xNomosWebPhoto_esrgan": "Phips/4xNomosWebPhoto_esrgan", "4xNomosWebPhoto_atd": "Phips/4xNomosWebPhoto_atd", "4xNomos8kHAT-L_otf": "Phips/4xNomos8kHAT-L_otf", "4xNomosUniDAT_otf": "Phips/4xNomosUniDAT_otf", "4xNomosUniDAT_bokeh_jpg": "Phips/4xNomosUniDAT_bokeh_jpg", "4xNomos8kSCHAT-L": "Phips/4xNomos8kSCHAT-L", "4xFFHQDAT": "Phips/4xFFHQDAT", "4xFaceUpDAT": "Phips/4xFaceUpDAT", "4xTextures_GTAV_rgt-s_dither": "Phips/4xTextures_GTAV_rgt-s_dither", "4xTextureDAT2_otf": "Phips/4xTextureDAT2_otf", "4xLexicaDAT2_otf": "Phips/4xLexicaDAT2_otf", "2xHFA2k_LUDVAE_compact": "Phips/2xHFA2k_LUDVAE_compact", "2xHFA2kAVCCompact": "Phips/2xHFA2kAVCCompact", "2xHFA2kCompact": "Phips/2xHFA2kCompact", "2xEvangelion_dat2": "Phips/2xEvangelion_dat2", "1xDeJPG_realplksr_otf": "Phips/1xDeJPG_realplksr_otf", "1xDeH264_realplksr": "Phips/1xDeH264_realplksr", "1xDeNoise_realplksr_otf": "Phips/1xDeNoise_realplksr_otf", "1xExposureCorrection_compact": "Phips/1xExposureCorrection_compact", "1xUnderExposureCorrection_compact": "Phips/1xUnderExposureCorrection_compact", "1xOverExposureCorrection_compact": "Phips/1xOverExposureCorrection_compact", } @spaces.GPU def upscale_image(image, model_selection): original = load_image(image) upscaler = UpscaleWithModel.from_pretrained(MODELS[model_selection]).to("cuda") image = upscaler(original, tiling=True, tile_width=1024, tile_height=1024) return original, image def clear_result(): return gr.update(value=None) title = """

Image Upscaler

Use this Space to upscale your images, makes use of the Image Generation Auxiliary Tools library.
This space makes use of my self trained models and makes use of tiling at 1024x1024
Here is an example input image you can use to try it out.
""" with gr.Blocks() as demo: gr.HTML(title) with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input Image") model_selection = gr.Dropdown( choices=list(MODELS.keys()), value="4xNomosWebPhoto_RealPLKSR", label="Model", ) run_button = gr.Button("Upscale") with gr.Column(): result = ImageSlider( interactive=False, label="Generated Image", ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=upscale_image, inputs=[input_image, model_selection], outputs=result, ) demo.launch(share=False)