Phips commited on
Commit
b394b97
·
1 Parent(s): 0dbae4f

Upload project

Browse files

A demo for my self trained models

app.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code taken (and slightly adopted) from https://huggingface.co/spaces/havas79/Real-ESRGAN_Demo/blob/main/app.py - credit where credit is due. I am not showcasing code here, but demoing my own trained models ;)
2
+
3
+ import gradio as gr
4
+ import cv2
5
+ import numpy
6
+ import os
7
+ import random
8
+ from basicsr.archs.rrdbnet_arch import RRDBNet
9
+ from basicsr.utils.download_util import load_file_from_url
10
+
11
+ from realesrgan import RealESRGANer
12
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
13
+
14
+ last_file = None
15
+ img_mode = "RGBA"
16
+
17
+ def realesrgan(img, model_name, face_enhance):
18
+
19
+ if not img:
20
+ return
21
+
22
+ imgwidth, imgheight = img.size
23
+
24
+ if imgwidth > 1000 or imgheight > 1000:
25
+ return error("Input Image too big")
26
+
27
+ # Define model parameters
28
+ if model_name == '4xNomos8kSC':
29
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
30
+ netscale = 4
31
+ elif model_name == '4xHFA2k':
32
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
33
+ netscale = 4
34
+ elif model_name == '4xLSDIR':
35
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
36
+ netscale = 4
37
+ elif model_name == '4xLSDIRplusN':
38
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
39
+ netscale = 4
40
+ elif model_name == '4xLSDIRplusC':
41
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
42
+ netscale = 4
43
+ elif model_name == '4xLSDIRplusR':
44
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
45
+ netscale = 4
46
+ elif model_name == '2xParimgCompact':
47
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
48
+ netscale = 2
49
+ elif model_name == '2xHFA2kCompact':
50
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
51
+ netscale = 2
52
+ elif model_name == '4xLSDIRCompactN':
53
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
54
+ netscale = 4
55
+ elif model_name == '4xLSDIRCompactC3':
56
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
57
+ netscale = 4
58
+ elif model_name == '4xLSDIRCompactR3':
59
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
60
+ netscale = 4
61
+
62
+ # Determine model paths
63
+ model_path = os.path.join('weights', model_name + '.pth')
64
+
65
+ # Restorer Class
66
+ upsampler = RealESRGANer(
67
+ scale=netscale,
68
+ model_path=model_path,
69
+ dni_weight=None,
70
+ model=model,
71
+ tile=0,
72
+ tile_pad=10,
73
+ pre_pad=10,
74
+ half=False,
75
+ gpu_id=None,
76
+ )
77
+
78
+ # Use GFPGAN for face enhancement
79
+ if face_enhance:
80
+ from gfpgan import GFPGANer
81
+ face_enhancer = GFPGANer(
82
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
83
+ upscale=netscale,
84
+ arch='clean',
85
+ channel_multiplier=2,
86
+ bg_upsampler=upsampler)
87
+
88
+ # Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
89
+ cv_img = numpy.array(img)
90
+ img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
91
+
92
+ # Apply restoration
93
+ try:
94
+ if face_enhance:
95
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
96
+ else:
97
+ output, _ = upsampler.enhance(img, netscale)
98
+ except RuntimeError as error:
99
+ print('Error', error)
100
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
101
+ else:
102
+ # Save restored image and return it to the output Image component
103
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
104
+ extension = 'png'
105
+ else:
106
+ extension = 'jpg'
107
+
108
+ out_filename = f"output_{rnd_string(16)}.{extension}"
109
+ cv2.imwrite(out_filename, output)
110
+ global last_file
111
+ last_file = out_filename
112
+ return out_filename
113
+
114
+
115
+ def rnd_string(x):
116
+ """Returns a string of 'x' random characters
117
+ """
118
+ characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
119
+ result = "".join((random.choice(characters)) for i in range(x))
120
+ return result
121
+
122
+
123
+ def reset():
124
+ """Resets the Image components of the Gradio interface and deletes
125
+ the last processed image
126
+ """
127
+ global last_file
128
+ if last_file:
129
+ print(f"Deleting {last_file} ...")
130
+ os.remove(last_file)
131
+ last_file = None
132
+ return gr.update(value=None), gr.update(value=None)
133
+
134
+
135
+ def has_transparency(img):
136
+ """This function works by first checking to see if a "transparency" property is defined
137
+ in the image's info -- if so, we return "True". Then, if the image is using indexed colors
138
+ (such as in GIFs), it gets the index of the transparent color in the palette
139
+ (img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
140
+ (img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
141
+ it, but it double-checks by getting the minimum and maximum values of every color channel
142
+ (img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
143
+ https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
144
+ """
145
+ if img.info.get("transparency", None) is not None:
146
+ return True
147
+ if img.mode == "P":
148
+ transparent = img.info.get("transparency", -1)
149
+ for _, index in img.getcolors():
150
+ if index == transparent:
151
+ return True
152
+ elif img.mode == "RGBA":
153
+ extrema = img.getextrema()
154
+ if extrema[3][0] < 255:
155
+ return True
156
+ return False
157
+
158
+
159
+ def image_properties(img):
160
+ """Returns the dimensions (width and height) and color mode of the input image and
161
+ also sets the global img_mode variable to be used by the realesrgan function
162
+ """
163
+ global img_mode
164
+ if img:
165
+ if has_transparency(img):
166
+ img_mode = "RGBA"
167
+ else:
168
+ img_mode = "RGB"
169
+ properties = f"Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
170
+ return properties
171
+
172
+
173
+ def main():
174
+ # Gradio Interface
175
+ with gr.Blocks(title="Self-trained ESRGAN models demo", theme="dark") as demo:
176
+
177
+ gr.Markdown(
178
+ """# <div align="center"> Upscale image </div>
179
+ Here I demo my self-trained models. The models with their corresponding infos can be found on [my github repo](https://github.com/phhofm/models).
180
+ """
181
+ )
182
+
183
+ with gr.Group():
184
+ with gr.Group():
185
+ model_name = gr.Dropdown(label="Model to be used",
186
+ choices=["2xHFA2kCompact", "2xParimgCompact", "4xLSDIRCompactN", "4xLSDIRCompactC3", "4xLSDIRCompactR3", "4xNomos8kSC", "4xHFA2k", "4xLSDIR", "4xLSDIRplusN", "4xLSDIRplusC", "4xLSDIRplusR"], value="4xLSDIRCompactC3",
187
+ info="See model infos at the bottom of this page")
188
+ face_enhance = gr.Checkbox(label="Face Enhancement using GFPGAN (Doesn't work for anime images)",value=False, show_label=True)
189
+
190
+ with gr.Row():
191
+ with gr.Group():
192
+ input_image = gr.Image(label="Source Image", type="pil", image_mode="RGBA")
193
+ input_image_properties = gr.Textbox(label="Image Properties - Demo will throw error if input image has either width or height > 1000. Output download is jpg for smaller size. Use models locally to circument these limits.", max_lines=1)
194
+ output_image = gr.Image(label="Upscaled Image", image_mode="RGBA")
195
+ with gr.Row():
196
+ upscale_btn = gr.Button("Upscale")
197
+ reset_btn = gr.Button("Reset")
198
+ with gr.Group():
199
+ gr.Markdown(
200
+ """
201
+ **Model infos**
202
+ *SRVGGNetCompact models - in general faster, but less powerful, than RRDBNet*
203
+ 2xHFA2kCompact - use for upscaling anime images 2x, faster than 4xHFA2k but less powerful (SRVGGNetCompact)
204
+ 2xParimgCompact - upscaling photos 2x, fast (SRVGGNetCompact)
205
+ 4xLSDIRCompactN - upscale a good quality photo (no degradations) 4x, faster than 4xLSDIRN but less powerful (SRVGGNetCompact)
206
+ 4xLSDIRCompactC3 - upscale a jpg compressed photo 4x, fast (SRVGGNetCompact)
207
+ 4xLSDIRCompactR3 - upscale a degraded photo 4x, fast (SRVGGNetCompact) (too strong, best used for interpolation like 4xLSDIRCompactN (or C) 75% 4xLSDIRCompactR3 25% to add little degradation handling to the previous one)
208
+
209
+ *RRDBNet models - in general more powerful than SRVGGNetCompact, but very slow in this demo*
210
+ 4xNomos8kSC - use for upscaling photos 4x
211
+ 4xHFA2k - use for upscaling anime images 4x
212
+ 4xLSDIR - upscale a good quality photo (no degradation) 4x
213
+ 4xLSDIRplusN - upscale a good quality photo (no degradation) 4x
214
+ 4xLSDIRplusC - upscale a jpg compressed photo 4x
215
+ 4xLSDIRplusR - upscale a degraded photo 4x (too strong, best used for interpolation like 4xLSDIRplusN (or C) 75% 4xLSDIRplusR 25% to add little degradation handling to the previous one)
216
+
217
+ *The following are not models I had trained, but rather interpolations I had created, they are available on my [repo](https://github.com/phhofm/models) and can be tried out locally with chaiNNer:*
218
+ 4xLSDIRCompact3 (4xLSDIRCompactC3 + 4xLSDIRCompactR3)
219
+ 4xLSDIRCompact2 (4xLSDIRCompactC2 + 4xLSDIRCompactR2)
220
+ 4xInt-Ultracri (UltraSharp + Remacri)
221
+ 4xInt-Superscri (Superscale + Remacri)
222
+ 4xInt-Siacri(Siax + Remacri)
223
+ 4xInt-RemDF2K (Remacri + RealSR_DF2K_JPEG)
224
+ 4xInt-RemArt (Remacri + VolArt)
225
+ 4xInt-RemAnime (Remacri + AnimeSharp)
226
+ 4xInt-RemacRestore (Remacri + UltraMix_Restore)
227
+ 4xInt-AnimeArt (AnimeSharp + VolArt)
228
+ 2xInt-LD-AnimeJaNai (LD-Anime + AnimeJaNai)
229
+ """)
230
+
231
+ # Event listeners:
232
+ input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
233
+ upscale_btn.click(fn=realesrgan, inputs=[input_image, model_name, face_enhance], outputs=output_image)
234
+ reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
235
+
236
+ demo.launch()
237
+
238
+
239
+ if __name__ == "__main__":
240
+ main()
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ numpy
4
+ opencv-python
5
+ Pillow
6
+ basicsr
7
+ facexlib
8
+ gfpgan
9
+ tqdm
10
+ gradio
11
+ realesrgan
weights/2xHFA2kCompact.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78da2d5c636f868f7741d5c736b34cdfc9fae3f2f104bc9dc655b963def784dc
3
+ size 4838301
weights/2xParimgCompact.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8222a24a2549189e78501811f0652c92d1460351c8c083df55ba49edcc86913
3
+ size 4839603
weights/4xHFA2k.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9d713f33ba671da364164117c271ff4866217420d5b20a220c79171467b2576
3
+ size 134057493
weights/4xLSDIR.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1a3f88b923df74014b7531268e9a48b3755bc7b627fd96994f8cf8f64a4dba5
3
+ size 134070901
weights/4xLSDIRCompactC3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a330cac38d956c7c3d98cd477f51b9f69df0f92f6c04d6f22998370718f846b9
3
+ size 5004681
weights/4xLSDIRCompactN.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bc7ed761954a0ffb5ac48f34021334253fddb17fc62b94392762a013fb30d7d
3
+ size 5005877
weights/4xLSDIRCompactR3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b7d8bccfee8897fb72126f05de83e1bdf36e7dc2b17023b074fc1c97580e568
3
+ size 5004681
weights/4xLSDIRplusC.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bea179c9c1dbf8979a7eb000efd9bb0f016542a58968db6ecf3fbadf776a1e78
3
+ size 134057493
weights/4xLSDIRplusN.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e60334068e1ac72909f97d7316b39a8b43b0201561a0ff8013a1d6285c1cf5
3
+ size 134068099
weights/4xLSDIRplusR.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:351bfd7f7eed1a42b8fa6dbcc4700cfec859c206861b6557d8d0cf222d41293e
3
+ size 134070921
weights/4xNomos8kSC.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c690dbb755a5a24839754abb5c6d6cfbb7f14dc992dea54a38921b06f9b5e1a
3
+ size 134057493