Spaces:
Running
Running
# pipeline.py | |
import os | |
import getpass | |
import pandas as pd | |
from typing import Optional | |
from langchain.docstore.document import Document | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel | |
import litellm | |
# We import the chain builders from our separate files | |
from classification_chain import get_classification_chain | |
from refusal_chain import get_refusal_chain | |
from tailor_chain import get_tailor_chain | |
from cleaner_chain import get_cleaner_chain, CleanerChain | |
# We also import the relevant RAG logic here or define it directly | |
# (We define build_rag_chain in this file for clarity) | |
############################################################################### | |
# 1) Environment: set up keys if missing | |
############################################################################### | |
if not os.environ.get("GEMINI_API_KEY"): | |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ") | |
if not os.environ.get("GROQ_API_KEY"): | |
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ") | |
############################################################################### | |
# 2) build_or_load_vectorstore | |
############################################################################### | |
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: | |
if os.path.exists(store_dir): | |
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
vectorstore = FAISS.load_local(store_dir, embeddings) | |
return vectorstore | |
else: | |
print(f"DEBUG: Building new store from CSV: {csv_path}") | |
df = pd.read_csv(csv_path) | |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')] | |
df.columns = df.columns.str.strip() | |
if "Answer" in df.columns: | |
df.rename(columns={"Answer": "Answers"}, inplace=True) | |
if "Question" not in df.columns and "Question " in df.columns: | |
df.rename(columns={"Question ": "Question"}, inplace=True) | |
if "Question" not in df.columns or "Answers" not in df.columns: | |
raise ValueError("CSV must have 'Question' and 'Answers' columns.") | |
docs = [] | |
for _, row in df.iterrows(): | |
q = str(row["Question"]) | |
ans = str(row["Answers"]) | |
doc = Document(page_content=ans, metadata={"question": q}) | |
docs.append(doc) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
vectorstore = FAISS.from_documents(docs, embedding=embeddings) | |
vectorstore.save_local(store_dir) | |
return vectorstore | |
############################################################################### | |
# 3) Build RAG chain for Gemini | |
############################################################################### | |
from langchain.llms.base import LLM | |
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: | |
class GeminiLangChainLLM(LLM): | |
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: | |
messages = [{"role": "user", "content": prompt}] | |
return llm_model(messages, stop_sequences=stop) | |
def _llm_type(self) -> str: | |
return "custom_gemini" | |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
gemini_as_llm = GeminiLangChainLLM() | |
rag_chain = RetrievalQA.from_chain_type( | |
llm=gemini_as_llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True | |
) | |
return rag_chain | |
############################################################################### | |
# 4) Initialize all the separate chains | |
############################################################################### | |
# Classification chain | |
classification_chain = get_classification_chain() | |
# Refusal chain | |
refusal_chain = get_refusal_chain() | |
# Tailor chain | |
tailor_chain = get_tailor_chain() | |
# Cleaner chain | |
cleaner_chain = get_cleaner_chain() | |
############################################################################### | |
# 5) Build our vectorstores + RAG chains | |
############################################################################### | |
wellness_csv = "AIChatbot.csv" | |
brand_csv = "BrandAI.csv" | |
wellness_store_dir = "faiss_wellness_store" | |
brand_store_dir = "faiss_brand_store" | |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) | |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) | |
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) | |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) | |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) | |
############################################################################### | |
# 6) Tools / Agents for web search | |
############################################################################### | |
search_tool = DuckDuckGoSearchTool() | |
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm) | |
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.") | |
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent]) | |
def do_web_search(query: str) -> str: | |
print("DEBUG: Attempting web search for more info...") | |
search_query = f"Give me relevant info: {query}" | |
response = manager_agent.run(search_query) | |
return response | |
############################################################################### | |
# 7) Orchestrator: run_with_chain | |
############################################################################### | |
def run_with_chain(query: str) -> str: | |
print("DEBUG: Starting run_with_chain...") | |
# 1) Classify | |
class_result = classification_chain.invoke({"query": query}) | |
classification = class_result.get("text", "").strip() | |
print("DEBUG: Classification =>", classification) | |
# If OutOfScope => refusal => tailor => return | |
if classification == "OutOfScope": | |
refusal_text = refusal_chain.run({}) | |
final_refusal = tailor_chain.run({"response": refusal_text}) | |
return final_refusal.strip() | |
# If Wellness => wellness RAG => if insufficient => web => unify => tailor | |
if classification == "Wellness": | |
rag_result = wellness_rag_chain({"query": query}) | |
csv_answer = rag_result["result"].strip() | |
if not csv_answer: | |
web_answer = do_web_search(query) | |
else: | |
lower_ans = csv_answer.lower() | |
if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]): | |
web_answer = do_web_search(query) | |
else: | |
web_answer = "" | |
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer) | |
final_answer = tailor_chain.run({"response": final_merged}) | |
return final_answer.strip() | |
# If Brand => brand RAG => tailor => return | |
if classification == "Brand": | |
rag_result = brand_rag_chain({"query": query}) | |
csv_answer = rag_result["result"].strip() | |
final_merged = cleaner_chain.merge(kb=csv_answer, web="") | |
final_answer = tailor_chain.run({"response": final_merged}) | |
return final_answer.strip() | |
# fallback | |
refusal_text = refusal_chain.run({}) | |
final_refusal = tailor_chain.run({"response": refusal_text}) | |
return final_refusal.strip() | |