ChatBotAgenticRAG_dup / pipeline.py
Phoenix21's picture
Update pipeline.py
74221f2 verified
raw
history blame
9.25 kB
import os
import getpass
import spacy
import pandas as pd
from typing import Optional
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
import subprocess
from langchain.llms.base import LLM
# Mistral Client Setup
from mistralai import Mistral
from pydantic_ai import Agent # Import Pydantic AI's Agent
# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY") # Ensure your Mistral API key is set
client = Mistral(api_key=mistral_api_key)
# Initialize Pydantic AI Agent (for text validation)
pydantic_agent = Agent('mistral:mistral-large-latest', result_type=str)
# Load spaCy model for NER and download it if not already installed
def install_spacy_model():
try:
spacy.load("en_core_web_sm")
print("spaCy model 'en_core_web_sm' is already installed.")
except OSError:
print("Downloading spaCy model 'en_core_web_sm'...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
print("spaCy model 'en_core_web_sm' downloaded successfully.")
install_spacy_model()
nlp = spacy.load("en_core_web_sm")
# Function to extract the main topic from the query using spaCy NER
def extract_main_topic(query: str) -> str:
"""
Extracts the main topic from the user's query using spaCy's NER.
Returns the first named entity or noun found in the query.
"""
doc = nlp(query)
# Try to extract the main topic as a named entity (person, product, etc.)
main_topic = None
for ent in doc.ents:
# Filter for specific entity types (you can adjust this based on your needs)
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: # Add more entity labels as needed
main_topic = ent.text
break
# If no named entity found, fallback to extracting the first noun or proper noun
if not main_topic:
for token in doc:
if token.pos_ in ["NOUN", "PROPN"]: # Extract first noun or proper noun
main_topic = token.text
break
# Return the extracted topic or a fallback value if no topic is found
return main_topic if main_topic else "this topic"
# Function to moderate text using Mistral moderation API
def moderate_text(query: str) -> str:
"""
Classifies the query as harmful or not using Mistral Moderation via Mistral API.
Returns "OutOfScope" if harmful, otherwise returns the original query.
"""
try:
pydantic_agent.run_sync(query) # Validate input
except Exception as e:
print(f"Error validating text: {e}")
return "Invalid text format."
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query}]
)
categories = response['results'][0]['categories']
if categories.get("violence_and_threats", False) or \
categories.get("hate_and_discrimination", False) or \
categories.get("dangerous_and_criminal_content", False) or \
categories.get("selfharm", False):
return "OutOfScope"
return query
# Build or load vectorstore function
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
# Build RAG chain for Gemini (no changes)
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
class GeminiLangChainLLM(LLM):
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
messages = [{"role": "user", "content": prompt}]
return llm_model(messages, stop_sequences=stop)
@property
def _llm_type(self) -> str:
return "custom_gemini"
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
gemini_as_llm = GeminiLangChainLLM()
rag_chain = RetrievalQA.from_chain_type(
llm=gemini_as_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return rag_chain
# Initialize all the separate chains
from classification_chain import get_classification_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from cleaner_chain import get_cleaner_chain
classification_chain = get_classification_chain() # Ensure this function is imported correctly
refusal_chain = get_refusal_chain() # Ensure this function is imported correctly
tailor_chain = get_tailor_chain() # Ensure this function is imported correctly
cleaner_chain = get_cleaner_chain() # Ensure this function is imported correctly
# Build our vectorstores + RAG chains
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
# Tools / Agents for web search
search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])
def do_web_search(query: str) -> str:
print("DEBUG: Attempting web search for more info...")
search_query = f"Give me relevant info: {query}"
response = manager_agent.run(search_query)
return response
# Orchestrator: run_with_chain
def run_with_chain(query: str) -> str:
print("DEBUG: Starting run_with_chain...")
# Moderate the query for harmful content
moderated_query = moderate_text(query)
if moderated_query == "OutOfScope":
return "Sorry, this query contains harmful or inappropriate content."
# Classify the query
class_result = classification_chain.invoke({"query": moderated_query})
classification = class_result.get("text", "").strip()
print("DEBUG: Classification =>", classification)
if classification == "OutOfScope":
refusal_text = refusal_chain.run({"topic": "this topic"})
final_refusal = tailor_chain.run({"response": refusal_text})
return final_refusal.strip()
if classification == "Wellness":
rag_result = wellness_rag_chain({"query": moderated_query})
csv_answer = rag_result["result"].strip()
if not csv_answer:
web_answer = do_web_search(moderated_query)
else:
lower_ans = csv_answer.lower()
if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
web_answer = do_web_search(moderated_query)
else:
web_answer = ""
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
final_answer = tailor_chain.run({"response": final_merged})
return final_answer.strip()
if classification == "Brand":
rag_result = brand_rag_chain({"query": moderated_query})
csv_answer = rag_result["result"].strip()
final_merged = cleaner_chain.merge(kb=csv_answer, web="")
final_answer = tailor_chain.run({"response": final_merged})
return final_answer.strip()
refusal_text = refusal_chain.run({"topic": "this topic"})
final_refusal = tailor_chain.run({"response": refusal_text})
return final_refusal.strip()