Spaces:
Sleeping
Sleeping
Added pydantic error handling
Browse files- pipeline.py +214 -150
pipeline.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import getpass
|
3 |
import spacy
|
4 |
import pandas as pd
|
5 |
-
from typing import Optional
|
6 |
import subprocess
|
7 |
from langchain.llms.base import LLM
|
8 |
from langchain.docstore.document import Document
|
@@ -10,7 +10,7 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.chains import RetrievalQA
|
12 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
13 |
-
from pydantic import BaseModel, ValidationError, validator
|
14 |
from mistralai import Mistral
|
15 |
from langchain.prompts import PromptTemplate
|
16 |
|
@@ -25,7 +25,33 @@ from prompts import classification_prompt, refusal_prompt, tailor_prompt
|
|
25 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
26 |
client = Mistral(api_key=mistral_api_key)
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def install_spacy_model():
|
30 |
try:
|
31 |
spacy.load("en_core_web_sm")
|
@@ -38,99 +64,121 @@ def install_spacy_model():
|
|
38 |
install_spacy_model()
|
39 |
nlp = spacy.load("en_core_web_sm")
|
40 |
|
41 |
-
# Function to extract the main topic from the query using spaCy NER
|
42 |
def extract_main_topic(query: str) -> str:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
main_topic = token.text
|
53 |
break
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
class QueryInput(BaseModel):
|
58 |
-
query: str
|
59 |
-
|
60 |
-
# Validator to ensure the query is always a string
|
61 |
-
@validator('query')
|
62 |
-
def check_query_is_string(cls, v):
|
63 |
-
if not isinstance(v, str):
|
64 |
-
raise ValueError("Query must be a valid string.")
|
65 |
-
return v
|
66 |
-
|
67 |
-
# Function to classify query based on wellness topics
|
68 |
-
def classify_query(query: str) -> str:
|
69 |
-
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
|
70 |
-
if any(keyword in query.lower() for keyword in wellness_keywords):
|
71 |
-
return "Wellness"
|
72 |
-
# Fallback to classification chain if not directly recognized
|
73 |
-
class_result = classification_chain.invoke({"query": query})
|
74 |
-
classification = class_result.get("text", "").strip()
|
75 |
-
return classification if classification != "OutOfScope" else "OutOfScope"
|
76 |
-
|
77 |
-
# Function to moderate text using Mistral moderation API (sync version)
|
78 |
-
def moderate_text(query: str) -> str:
|
79 |
try:
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
except ValidationError as e:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Call the Mistral moderation API
|
87 |
-
response = client.classifiers.moderate_chat(
|
88 |
-
model="mistral-moderation-latest",
|
89 |
-
inputs=[{"role": "user", "content": query}]
|
90 |
-
)
|
91 |
-
|
92 |
-
# Check if harmful categories are present in the response
|
93 |
-
if hasattr(response, 'results') and response.results:
|
94 |
-
categories = response.results[0].categories
|
95 |
-
if categories.get("violence_and_threats", False) or \
|
96 |
-
categories.get("hate_and_discrimination", False) or \
|
97 |
-
categories.get("dangerous_and_criminal_content", False) or \
|
98 |
-
categories.get("selfharm", False):
|
99 |
-
return "OutOfScope"
|
100 |
-
|
101 |
-
return query
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
# Function to build or load the vector store from CSV data
|
105 |
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
print(f"
|
113 |
df = pd.read_csv(csv_path)
|
114 |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
115 |
df.columns = df.columns.str.strip()
|
|
|
|
|
116 |
if "Answer" in df.columns:
|
117 |
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
118 |
if "Question" not in df.columns and "Question " in df.columns:
|
119 |
df.rename(columns={"Question ": "Question"}, inplace=True)
|
|
|
120 |
if "Question" not in df.columns or "Answers" not in df.columns:
|
121 |
-
raise ValueError("CSV must have 'Question' and 'Answers' columns
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
129 |
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
130 |
vectorstore.save_local(store_dir)
|
131 |
return vectorstore
|
|
|
|
|
|
|
132 |
|
133 |
-
# Function to build RAG chain
|
134 |
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
135 |
class GeminiLangChainLLM(LLM):
|
136 |
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
@@ -141,87 +189,103 @@ def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
|
141 |
def _llm_type(self) -> str:
|
142 |
return "custom_gemini"
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
155 |
def do_web_search(query: str) -> str:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
-
# Function to combine web and knowledge base responses
|
166 |
def merge_responses(kb_answer: str, web_answer: str) -> str:
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
# Orchestrate the entire workflow
|
172 |
def run_pipeline(query: str) -> str:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
|
|
|
180 |
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
refusal_text = refusal_chain.run({"topic": "this topic"})
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
cleaner_chain = get_cleaner_chain()
|
212 |
-
|
213 |
-
wellness_csv = "AIChatbot.csv"
|
214 |
-
brand_csv = "BrandAI.csv"
|
215 |
-
wellness_store_dir = "faiss_wellness_store"
|
216 |
-
brand_store_dir = "faiss_brand_store"
|
217 |
-
|
218 |
-
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
219 |
-
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
220 |
-
|
221 |
-
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
222 |
-
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
223 |
-
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
224 |
-
|
225 |
-
# Function to wrap up and run the chain
|
226 |
def run_with_chain(query: str) -> str:
|
227 |
-
return run_pipeline(query)
|
|
|
2 |
import getpass
|
3 |
import spacy
|
4 |
import pandas as pd
|
5 |
+
from typing import Optional, List, Dict, Any
|
6 |
import subprocess
|
7 |
from langchain.llms.base import LLM
|
8 |
from langchain.docstore.document import Document
|
|
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.chains import RetrievalQA
|
12 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
13 |
+
from pydantic import BaseModel, Field, ValidationError, validator
|
14 |
from mistralai import Mistral
|
15 |
from langchain.prompts import PromptTemplate
|
16 |
|
|
|
25 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
26 |
client = Mistral(api_key=mistral_api_key)
|
27 |
|
28 |
+
# Pydantic models for validation and type safety
|
29 |
+
class QueryInput(BaseModel):
|
30 |
+
query: str = Field(..., min_length=1, description="The input query string")
|
31 |
+
|
32 |
+
@validator('query')
|
33 |
+
def check_query_is_string(cls, v):
|
34 |
+
if not isinstance(v, str):
|
35 |
+
raise ValueError("Query must be a valid string")
|
36 |
+
if v.strip() == "":
|
37 |
+
raise ValueError("Query cannot be empty or just whitespace")
|
38 |
+
return v.strip()
|
39 |
+
|
40 |
+
class ClassificationResult(BaseModel):
|
41 |
+
category: str = Field(..., description="The classification category")
|
42 |
+
confidence: float = Field(..., ge=0.0, le=1.0, description="Classification confidence score")
|
43 |
+
|
44 |
+
class ModerationResult(BaseModel):
|
45 |
+
is_safe: bool = Field(..., description="Whether the content is safe")
|
46 |
+
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
|
47 |
+
original_text: str = Field(..., description="The original input text")
|
48 |
+
|
49 |
+
class RAGResponse(BaseModel):
|
50 |
+
answer: str = Field(..., description="The generated answer")
|
51 |
+
sources: List[str] = Field(default_factory=list, description="Source documents used")
|
52 |
+
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score of the answer")
|
53 |
+
|
54 |
+
# Load spaCy model for NER
|
55 |
def install_spacy_model():
|
56 |
try:
|
57 |
spacy.load("en_core_web_sm")
|
|
|
64 |
install_spacy_model()
|
65 |
nlp = spacy.load("en_core_web_sm")
|
66 |
|
|
|
67 |
def extract_main_topic(query: str) -> str:
|
68 |
+
try:
|
69 |
+
query_input = QueryInput(query=query)
|
70 |
+
doc = nlp(query_input.query)
|
71 |
+
main_topic = None
|
72 |
+
|
73 |
+
# Try to find named entities first
|
74 |
+
for ent in doc.ents:
|
75 |
+
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
|
76 |
+
main_topic = ent.text
|
|
|
77 |
break
|
78 |
+
|
79 |
+
# If no named entities found, look for nouns
|
80 |
+
if not main_topic:
|
81 |
+
for token in doc:
|
82 |
+
if token.pos_ in ["NOUN", "PROPN"]:
|
83 |
+
main_topic = token.text
|
84 |
+
break
|
85 |
+
|
86 |
+
return main_topic if main_topic else "this topic"
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error extracting main topic: {e}")
|
89 |
+
return "this topic"
|
90 |
|
91 |
+
def moderate_text(query: str) -> ModerationResult:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
try:
|
93 |
+
query_input = QueryInput(query=query)
|
94 |
+
|
95 |
+
response = client.classifiers.moderate_chat(
|
96 |
+
model="mistral-moderation-latest",
|
97 |
+
inputs=[{"role": "user", "content": query_input.query}]
|
98 |
+
)
|
99 |
+
|
100 |
+
is_safe = True
|
101 |
+
categories = {}
|
102 |
+
|
103 |
+
if hasattr(response, 'results') and response.results:
|
104 |
+
categories = {
|
105 |
+
"violence": response.results[0].categories.get("violence_and_threats", False),
|
106 |
+
"hate": response.results[0].categories.get("hate_and_discrimination", False),
|
107 |
+
"dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False),
|
108 |
+
"selfharm": response.results[0].categories.get("selfharm", False)
|
109 |
+
}
|
110 |
+
is_safe = not any(categories.values())
|
111 |
+
|
112 |
+
return ModerationResult(
|
113 |
+
is_safe=is_safe,
|
114 |
+
categories=categories,
|
115 |
+
original_text=query_input.query
|
116 |
+
)
|
117 |
except ValidationError as e:
|
118 |
+
raise ValueError(f"Input validation failed: {str(e)}")
|
119 |
+
except Exception as e:
|
120 |
+
raise RuntimeError(f"Moderation failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
def classify_query(query: str) -> ClassificationResult:
|
123 |
+
try:
|
124 |
+
query_input = QueryInput(query=query)
|
125 |
+
|
126 |
+
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
|
127 |
+
if any(keyword in query_input.query.lower() for keyword in wellness_keywords):
|
128 |
+
return ClassificationResult(category="Wellness", confidence=0.9)
|
129 |
+
|
130 |
+
class_result = classification_chain.invoke({"query": query_input.query})
|
131 |
+
classification = class_result.get("text", "").strip()
|
132 |
+
|
133 |
+
confidence_map = {
|
134 |
+
"Wellness": 0.8,
|
135 |
+
"Brand": 0.8,
|
136 |
+
"OutOfScope": 0.6
|
137 |
+
}
|
138 |
+
|
139 |
+
return ClassificationResult(
|
140 |
+
category=classification if classification != "" else "OutOfScope",
|
141 |
+
confidence=confidence_map.get(classification, 0.5)
|
142 |
+
)
|
143 |
+
except ValidationError as e:
|
144 |
+
raise ValueError(f"Classification input validation failed: {str(e)}")
|
145 |
+
except Exception as e:
|
146 |
+
raise RuntimeError(f"Classification failed: {str(e)}")
|
147 |
|
|
|
148 |
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
149 |
+
try:
|
150 |
+
if os.path.exists(store_dir):
|
151 |
+
print(f"Loading existing FAISS store from '{store_dir}'")
|
152 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
153 |
+
return FAISS.load_local(store_dir, embeddings)
|
154 |
+
|
155 |
+
print(f"Building new FAISS store from CSV: {csv_path}")
|
156 |
df = pd.read_csv(csv_path)
|
157 |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
158 |
df.columns = df.columns.str.strip()
|
159 |
+
|
160 |
+
# Handle column name variations
|
161 |
if "Answer" in df.columns:
|
162 |
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
163 |
if "Question" not in df.columns and "Question " in df.columns:
|
164 |
df.rename(columns={"Question ": "Question"}, inplace=True)
|
165 |
+
|
166 |
if "Question" not in df.columns or "Answers" not in df.columns:
|
167 |
+
raise ValueError("CSV must have 'Question' and 'Answers' columns")
|
168 |
+
|
169 |
+
docs = [
|
170 |
+
Document(page_content=str(row["Answers"]), metadata={"question": str(row["Question"])})
|
171 |
+
for _, row in df.iterrows()
|
172 |
+
]
|
173 |
+
|
174 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
175 |
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
176 |
vectorstore.save_local(store_dir)
|
177 |
return vectorstore
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
|
181 |
|
|
|
182 |
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
183 |
class GeminiLangChainLLM(LLM):
|
184 |
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
|
|
189 |
def _llm_type(self) -> str:
|
190 |
return "custom_gemini"
|
191 |
|
192 |
+
try:
|
193 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
194 |
+
gemini_as_llm = GeminiLangChainLLM()
|
195 |
+
return RetrievalQA.from_chain_type(
|
196 |
+
llm=gemini_as_llm,
|
197 |
+
chain_type="stuff",
|
198 |
+
retriever=retriever,
|
199 |
+
return_source_documents=True
|
200 |
+
)
|
201 |
+
except Exception as e:
|
202 |
+
raise RuntimeError(f"Error building RAG chain: {str(e)}")
|
203 |
+
|
204 |
def do_web_search(query: str) -> str:
|
205 |
+
try:
|
206 |
+
query_input = QueryInput(query=query)
|
207 |
+
search_tool = DuckDuckGoSearchTool()
|
208 |
+
web_agent = CodeAgent(tools=[search_tool], model=pydantic_agent)
|
209 |
+
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Performs web searches")
|
210 |
+
manager_agent = CodeAgent(tools=[], model=pydantic_agent, managed_agents=[managed_web_agent])
|
211 |
+
|
212 |
+
search_query = f"Give me relevant info: {query_input.query}"
|
213 |
+
return manager_agent.run(search_query)
|
214 |
+
except Exception as e:
|
215 |
+
return f"Web search failed: {str(e)}"
|
216 |
|
|
|
217 |
def merge_responses(kb_answer: str, web_answer: str) -> str:
|
218 |
+
try:
|
219 |
+
if not kb_answer and not web_answer:
|
220 |
+
return "No relevant information found."
|
221 |
+
|
222 |
+
if not web_answer:
|
223 |
+
return kb_answer.strip()
|
224 |
+
|
225 |
+
if not kb_answer:
|
226 |
+
return web_answer.strip()
|
227 |
+
|
228 |
+
return f"Knowledge Base Answer: {kb_answer.strip()}\n\nWeb Search Result: {web_answer.strip()}"
|
229 |
+
except Exception as e:
|
230 |
+
return f"Error merging responses: {str(e)}"
|
231 |
|
|
|
232 |
def run_pipeline(query: str) -> str:
|
233 |
+
try:
|
234 |
+
# Validate and moderate input
|
235 |
+
moderation_result = moderate_text(query)
|
236 |
+
if not moderation_result.is_safe:
|
237 |
+
return "Sorry, this query contains harmful or inappropriate content."
|
238 |
+
|
239 |
+
# Classify the query
|
240 |
+
classification_result = classify_query(moderation_result.original_text)
|
241 |
|
242 |
+
if classification_result.category == "OutOfScope":
|
243 |
+
refusal_text = refusal_chain.run({"topic": "this topic"})
|
244 |
+
return tailor_chain.run({"response": refusal_text}).strip()
|
245 |
|
246 |
+
# Handle different classifications
|
247 |
+
if classification_result.category == "Wellness":
|
248 |
+
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
249 |
+
csv_answer = rag_result["result"].strip()
|
250 |
+
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
|
251 |
+
final_merged = merge_responses(csv_answer, web_answer)
|
252 |
+
return tailor_chain.run({"response": final_merged}).strip()
|
253 |
+
|
254 |
+
if classification_result.category == "Brand":
|
255 |
+
rag_result = brand_rag_chain({"query": moderation_result.original_text})
|
256 |
+
csv_answer = rag_result["result"].strip()
|
257 |
+
final_merged = merge_responses(csv_answer, "")
|
258 |
+
return tailor_chain.run({"response": final_merged}).strip()
|
259 |
+
|
260 |
+
# Default fallback
|
261 |
refusal_text = refusal_chain.run({"topic": "this topic"})
|
262 |
+
return tailor_chain.run({"response": refusal_text}).strip()
|
263 |
+
|
264 |
+
except Exception as e:
|
265 |
+
return f"An error occurred while processing your request: {str(e)}"
|
266 |
+
|
267 |
+
# Initialize chains and vectorstores
|
268 |
+
try:
|
269 |
+
classification_chain = get_classification_chain()
|
270 |
+
refusal_chain = get_refusal_chain()
|
271 |
+
tailor_chain = get_tailor_chain()
|
272 |
+
cleaner_chain = get_cleaner_chain()
|
273 |
+
|
274 |
+
wellness_csv = "AIChatbot.csv"
|
275 |
+
brand_csv = "BrandAI.csv"
|
276 |
+
wellness_store_dir = "faiss_wellness_store"
|
277 |
+
brand_store_dir = "faiss_brand_store"
|
278 |
+
|
279 |
+
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
280 |
+
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
281 |
+
|
282 |
+
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
283 |
+
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
284 |
+
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
285 |
+
|
286 |
+
print("Pipeline initialized successfully!")
|
287 |
+
except Exception as e:
|
288 |
+
print(f"Error initializing pipeline: {str(e)}")
|
289 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
def run_with_chain(query: str) -> str:
|
291 |
+
return run_pipeline(query)
|