Spaces:
Running
Running
Update pipeline.py
Browse files- pipeline.py +30 -188
pipeline.py
CHANGED
@@ -3,20 +3,19 @@ import getpass
|
|
3 |
import spacy
|
4 |
import pandas as pd
|
5 |
from typing import Optional
|
|
|
|
|
6 |
from langchain.docstore.document import Document
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain.vectorstores import FAISS
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
11 |
-
import subprocess
|
12 |
-
from langchain.llms.base import LLM
|
13 |
-
|
14 |
-
# Mistral Client Setup
|
15 |
-
from mistralai import Mistral
|
16 |
from pydantic_ai import Agent # Import Pydantic AI's Agent
|
|
|
|
|
17 |
|
18 |
# Initialize Mistral API client
|
19 |
-
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
20 |
client = Mistral(api_key=mistral_api_key)
|
21 |
|
22 |
# Initialize Pydantic AI Agent (for text validation)
|
@@ -37,47 +36,40 @@ nlp = spacy.load("en_core_web_sm")
|
|
37 |
|
38 |
# Function to extract the main topic from the query using spaCy NER
|
39 |
def extract_main_topic(query: str) -> str:
|
40 |
-
"""
|
41 |
-
Extracts the main topic from the user's query using spaCy's NER.
|
42 |
-
Returns the first named entity or noun found in the query.
|
43 |
-
"""
|
44 |
doc = nlp(query)
|
45 |
-
|
46 |
-
# Try to extract the main topic as a named entity (person, product, etc.)
|
47 |
main_topic = None
|
48 |
for ent in doc.ents:
|
49 |
-
|
50 |
-
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: # Add more entity labels as needed
|
51 |
main_topic = ent.text
|
52 |
break
|
53 |
-
|
54 |
-
# If no named entity found, fallback to extracting the first noun or proper noun
|
55 |
if not main_topic:
|
56 |
for token in doc:
|
57 |
-
if token.pos_ in ["NOUN", "PROPN"]:
|
58 |
main_topic = token.text
|
59 |
break
|
60 |
-
|
61 |
-
# Return the extracted topic or a fallback value if no topic is found
|
62 |
return main_topic if main_topic else "this topic"
|
63 |
|
64 |
-
# Function to
|
65 |
-
def
|
66 |
-
"""
|
67 |
-
|
68 |
-
|
69 |
-
""
|
|
|
|
|
|
|
|
|
|
|
70 |
try:
|
71 |
-
pydantic_agent.
|
72 |
except Exception as e:
|
73 |
print(f"Error validating text: {e}")
|
74 |
return "Invalid text format."
|
75 |
|
76 |
-
response = client.classifiers.moderate_chat(
|
77 |
model="mistral-moderation-latest",
|
78 |
inputs=[{"role": "user", "content": query}]
|
79 |
)
|
80 |
-
|
81 |
categories = response['results'][0]['categories']
|
82 |
if categories.get("violence_and_threats", False) or \
|
83 |
categories.get("hate_and_discrimination", False) or \
|
@@ -87,163 +79,15 @@ def moderate_text(query: str) -> str:
|
|
87 |
|
88 |
return query
|
89 |
|
90 |
-
#
|
91 |
-
def
|
92 |
-
|
93 |
-
|
94 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
95 |
-
vectorstore = FAISS.load_local(store_dir, embeddings)
|
96 |
-
return vectorstore
|
97 |
-
else:
|
98 |
-
print(f"DEBUG: Building new store from CSV: {csv_path}")
|
99 |
-
df = pd.read_csv(csv_path)
|
100 |
-
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
101 |
-
df.columns = df.columns.str.strip()
|
102 |
-
if "Answer" in df.columns:
|
103 |
-
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
104 |
-
if "Question" not in df.columns and "Question " in df.columns:
|
105 |
-
df.rename(columns={"Question ": "Question"}, inplace=True)
|
106 |
-
if "Question" not in df.columns or "Answers" not in df.columns:
|
107 |
-
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
|
108 |
-
docs = []
|
109 |
-
for _, row in df.iterrows():
|
110 |
-
q = str(row["Question"])
|
111 |
-
ans = str(row["Answers"])
|
112 |
-
doc = Document(page_content=ans, metadata={"question": q})
|
113 |
-
docs.append(doc)
|
114 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
115 |
-
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
116 |
-
vectorstore.save_local(store_dir)
|
117 |
-
return vectorstore
|
118 |
-
|
119 |
-
# Build RAG chain for Gemini (no changes)
|
120 |
-
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
121 |
-
class GeminiLangChainLLM(LLM):
|
122 |
-
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
123 |
-
messages = [{"role": "user", "content": prompt}]
|
124 |
-
return llm_model(messages, stop_sequences=stop)
|
125 |
-
|
126 |
-
@property
|
127 |
-
def _llm_type(self) -> str:
|
128 |
-
return "custom_gemini"
|
129 |
-
|
130 |
-
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
131 |
-
gemini_as_llm = GeminiLangChainLLM()
|
132 |
-
rag_chain = RetrievalQA.from_chain_type(
|
133 |
-
llm=gemini_as_llm,
|
134 |
-
chain_type="stuff",
|
135 |
-
retriever=retriever,
|
136 |
-
return_source_documents=True
|
137 |
-
)
|
138 |
-
return rag_chain
|
139 |
-
|
140 |
-
# Initialize all the separate chains
|
141 |
-
from classification_chain import get_classification_chain
|
142 |
-
from refusal_chain import get_refusal_chain
|
143 |
-
from tailor_chain import get_tailor_chain
|
144 |
-
from cleaner_chain import get_cleaner_chain
|
145 |
-
|
146 |
-
classification_chain = get_classification_chain() # Ensure this function is imported correctly
|
147 |
-
refusal_chain = get_refusal_chain() # Ensure this function is imported correctly
|
148 |
-
tailor_chain = get_tailor_chain() # Ensure this function is imported correctly
|
149 |
-
cleaner_chain = get_cleaner_chain() # Ensure this function is imported correctly
|
150 |
-
|
151 |
-
# Build our vectorstores + RAG chains
|
152 |
-
wellness_csv = "AIChatbot.csv"
|
153 |
-
brand_csv = "BrandAI.csv"
|
154 |
-
wellness_store_dir = "faiss_wellness_store"
|
155 |
-
brand_store_dir = "faiss_brand_store"
|
156 |
-
|
157 |
-
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
158 |
-
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
159 |
-
|
160 |
-
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
161 |
-
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
162 |
-
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
163 |
-
|
164 |
-
# Tools / Agents for web search
|
165 |
-
search_tool = DuckDuckGoSearchTool()
|
166 |
-
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
|
167 |
-
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
|
168 |
-
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])
|
169 |
-
|
170 |
-
def do_web_search(query: str) -> str:
|
171 |
-
print("DEBUG: Attempting web search for more info...")
|
172 |
-
search_query = f"Give me relevant info: {query}"
|
173 |
-
response = manager_agent.run(search_query)
|
174 |
-
return response
|
175 |
-
|
176 |
-
# Modify the classification logic to recognize box breathing
|
177 |
-
def classify_query(query: str) -> str:
|
178 |
-
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
|
179 |
-
|
180 |
-
if any(keyword in query.lower() for keyword in wellness_keywords):
|
181 |
-
return "Wellness"
|
182 |
-
|
183 |
-
# If not recognized as wellness, use the classification chain
|
184 |
-
class_result = classification_chain.invoke({"query": query})
|
185 |
-
classification = class_result.get("text", "").strip()
|
186 |
-
|
187 |
-
if classification == "OutOfScope":
|
188 |
-
return "OutOfScope"
|
189 |
-
return classification
|
190 |
-
|
191 |
-
# # Orchestrator: run_with_chain
|
192 |
-
# def run_with_chain(query: str) -> str:
|
193 |
-
# print("DEBUG: Starting run_with_chain...")
|
194 |
-
|
195 |
-
# # Moderate the query for harmful content
|
196 |
-
# moderated_query = moderate_text(query)
|
197 |
-
# if moderated_query == "OutOfScope":
|
198 |
-
# return "Sorry, this query contains harmful or inappropriate content."
|
199 |
-
|
200 |
-
# # Classify the query
|
201 |
-
# class_result = classification_chain.invoke({"query": moderated_query})
|
202 |
-
# classification = class_result.get("text", "").strip()
|
203 |
-
# print("DEBUG: Classification =>", classification)
|
204 |
-
|
205 |
-
# if classification == "OutOfScope":
|
206 |
-
# refusal_text = refusal_chain.run({"topic": "this topic"})
|
207 |
-
# final_refusal = tailor_chain.run({"response": refusal_text})
|
208 |
-
# return final_refusal.strip()
|
209 |
-
|
210 |
-
# if classification == "Wellness":
|
211 |
-
# rag_result = wellness_rag_chain({"query": moderated_query})
|
212 |
-
# csv_answer = rag_result["result"].strip()
|
213 |
-
# if not csv_answer:
|
214 |
-
# web_answer = do_web_search(moderated_query)
|
215 |
-
# else:
|
216 |
-
# lower_ans = csv_answer.lower()
|
217 |
-
# if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
|
218 |
-
# web_answer = do_web_search(moderated_query)
|
219 |
-
# else:
|
220 |
-
# web_answer = ""
|
221 |
-
# final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
222 |
-
# final_answer = tailor_chain.run({"response": final_merged})
|
223 |
-
# return final_answer.strip()
|
224 |
-
|
225 |
-
# if classification == "Brand":
|
226 |
-
# rag_result = brand_rag_chain({"query": moderated_query})
|
227 |
-
# csv_answer = rag_result["result"].strip()
|
228 |
-
# final_merged = cleaner_chain.merge(kb=csv_answer, web="")
|
229 |
-
# final_answer = tailor_chain.run({"response": final_merged})
|
230 |
-
# return final_answer.strip()
|
231 |
-
|
232 |
-
# refusal_text = refusal_chain.run({"topic": "this topic"})
|
233 |
-
# final_refusal = tailor_chain.run({"response": refusal_text})
|
234 |
-
# return final_refusal.strip()
|
235 |
-
|
236 |
-
def run_with_chain(query: str) -> str:
|
237 |
-
print("DEBUG: Starting run_with_chain...")
|
238 |
-
|
239 |
-
# Moderate the query for harmful content
|
240 |
-
moderated_query = moderate_text(query)
|
241 |
if moderated_query == "OutOfScope":
|
242 |
return "Sorry, this query contains harmful or inappropriate content."
|
243 |
|
244 |
-
# Classify the query manually
|
245 |
classification = classify_query(moderated_query)
|
246 |
-
print("DEBUG: Classification =>", classification)
|
247 |
|
248 |
if classification == "OutOfScope":
|
249 |
refusal_text = refusal_chain.run({"topic": "this topic"})
|
@@ -253,14 +97,9 @@ def run_with_chain(query: str) -> str:
|
|
253 |
if classification == "Wellness":
|
254 |
rag_result = wellness_rag_chain({"query": moderated_query})
|
255 |
csv_answer = rag_result["result"].strip()
|
|
|
256 |
if not csv_answer:
|
257 |
-
web_answer = do_web_search(moderated_query)
|
258 |
-
else:
|
259 |
-
lower_ans = csv_answer.lower()
|
260 |
-
if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
|
261 |
-
web_answer = do_web_search(moderated_query)
|
262 |
-
else:
|
263 |
-
web_answer = ""
|
264 |
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
265 |
final_answer = tailor_chain.run({"response": final_merged})
|
266 |
return final_answer.strip()
|
@@ -276,3 +115,6 @@ def run_with_chain(query: str) -> str:
|
|
276 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
277 |
return final_refusal.strip()
|
278 |
|
|
|
|
|
|
|
|
3 |
import spacy
|
4 |
import pandas as pd
|
5 |
from typing import Optional
|
6 |
+
import subprocess
|
7 |
+
from langchain.llms.base import LLM
|
8 |
from langchain.docstore.document import Document
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.chains import RetrievalQA
|
12 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
|
|
|
|
|
|
|
|
|
|
13 |
from pydantic_ai import Agent # Import Pydantic AI's Agent
|
14 |
+
from mistralai import Mistral
|
15 |
+
import asyncio # Needed for managing async tasks
|
16 |
|
17 |
# Initialize Mistral API client
|
18 |
+
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
19 |
client = Mistral(api_key=mistral_api_key)
|
20 |
|
21 |
# Initialize Pydantic AI Agent (for text validation)
|
|
|
36 |
|
37 |
# Function to extract the main topic from the query using spaCy NER
|
38 |
def extract_main_topic(query: str) -> str:
|
|
|
|
|
|
|
|
|
39 |
doc = nlp(query)
|
|
|
|
|
40 |
main_topic = None
|
41 |
for ent in doc.ents:
|
42 |
+
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
|
|
|
43 |
main_topic = ent.text
|
44 |
break
|
|
|
|
|
45 |
if not main_topic:
|
46 |
for token in doc:
|
47 |
+
if token.pos_ in ["NOUN", "PROPN"]:
|
48 |
main_topic = token.text
|
49 |
break
|
|
|
|
|
50 |
return main_topic if main_topic else "this topic"
|
51 |
|
52 |
+
# Function to classify query based on wellness topics
|
53 |
+
def classify_query(query: str) -> str:
|
54 |
+
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
|
55 |
+
if any(keyword in query.lower() for keyword in wellness_keywords):
|
56 |
+
return "Wellness"
|
57 |
+
class_result = classification_chain.invoke({"query": query})
|
58 |
+
classification = class_result.get("text", "").strip()
|
59 |
+
return classification if classification != "OutOfScope" else "OutOfScope"
|
60 |
+
|
61 |
+
# Function to moderate text using Mistral moderation API (async version)
|
62 |
+
async def moderate_text(query: str) -> str:
|
63 |
try:
|
64 |
+
await pydantic_agent.run(query) # Use async run for Pydantic validation
|
65 |
except Exception as e:
|
66 |
print(f"Error validating text: {e}")
|
67 |
return "Invalid text format."
|
68 |
|
69 |
+
response = await client.classifiers.moderate_chat(
|
70 |
model="mistral-moderation-latest",
|
71 |
inputs=[{"role": "user", "content": query}]
|
72 |
)
|
|
|
73 |
categories = response['results'][0]['categories']
|
74 |
if categories.get("violence_and_threats", False) or \
|
75 |
categories.get("hate_and_discrimination", False) or \
|
|
|
79 |
|
80 |
return query
|
81 |
|
82 |
+
# Use the event loop to run the async functions properly
|
83 |
+
async def run_async_pipeline(query: str) -> str:
|
84 |
+
# Moderate the query for harmful content (async)
|
85 |
+
moderated_query = await moderate_text(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if moderated_query == "OutOfScope":
|
87 |
return "Sorry, this query contains harmful or inappropriate content."
|
88 |
|
89 |
+
# Classify the query manually
|
90 |
classification = classify_query(moderated_query)
|
|
|
91 |
|
92 |
if classification == "OutOfScope":
|
93 |
refusal_text = refusal_chain.run({"topic": "this topic"})
|
|
|
97 |
if classification == "Wellness":
|
98 |
rag_result = wellness_rag_chain({"query": moderated_query})
|
99 |
csv_answer = rag_result["result"].strip()
|
100 |
+
web_answer = "" # Empty if we found an answer from the knowledge base
|
101 |
if not csv_answer:
|
102 |
+
web_answer = await do_web_search(moderated_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
104 |
final_answer = tailor_chain.run({"response": final_merged})
|
105 |
return final_answer.strip()
|
|
|
115 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
116 |
return final_refusal.strip()
|
117 |
|
118 |
+
# Run the pipeline with the event loop
|
119 |
+
def run_with_chain(query: str) -> str:
|
120 |
+
return asyncio.run(run_async_pipeline(query))
|