Spaces:
Sleeping
Sleeping
Update pipeline.py
Browse files- pipeline.py +50 -90
pipeline.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
-
# pipeline.py
|
2 |
import os
|
3 |
import getpass
|
|
|
4 |
import pandas as pd
|
5 |
from typing import Optional
|
6 |
-
|
7 |
from langchain.docstore.document import Document
|
8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.vectorstores import FAISS
|
10 |
from langchain.chains import RetrievalQA
|
11 |
-
|
12 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
13 |
import litellm
|
14 |
|
15 |
-
#
|
16 |
from classification_chain import get_classification_chain
|
17 |
from refusal_chain import get_refusal_chain
|
18 |
from tailor_chain import get_tailor_chain
|
@@ -21,82 +19,52 @@ from cleaner_chain import get_cleaner_chain, CleanerChain
|
|
21 |
# We also import the relevant RAG logic here or define it directly
|
22 |
# (We define build_rag_chain in this file for clarity)
|
23 |
|
24 |
-
###############################################################################
|
25 |
# 1) Environment: set up keys if missing
|
26 |
-
###############################################################################
|
27 |
if not os.environ.get("GEMINI_API_KEY"):
|
28 |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
29 |
if not os.environ.get("GROQ_API_KEY"):
|
30 |
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
for
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
from langchain.llms.base import LLM
|
67 |
-
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
68 |
-
class GeminiLangChainLLM(LLM):
|
69 |
-
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
70 |
-
messages = [{"role": "user", "content": prompt}]
|
71 |
-
return llm_model(messages, stop_sequences=stop)
|
72 |
-
@property
|
73 |
-
def _llm_type(self) -> str:
|
74 |
-
return "custom_gemini"
|
75 |
-
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
76 |
-
gemini_as_llm = GeminiLangChainLLM()
|
77 |
-
rag_chain = RetrievalQA.from_chain_type(
|
78 |
-
llm=gemini_as_llm,
|
79 |
-
chain_type="stuff",
|
80 |
-
retriever=retriever,
|
81 |
-
return_source_documents=True
|
82 |
-
)
|
83 |
-
return rag_chain
|
84 |
-
|
85 |
-
###############################################################################
|
86 |
-
# 4) Initialize all the separate chains
|
87 |
-
###############################################################################
|
88 |
-
# Classification chain
|
89 |
classification_chain = get_classification_chain()
|
90 |
-
# Refusal chain
|
91 |
-
refusal_chain = get_refusal_chain()
|
92 |
-
# Tailor chain
|
93 |
tailor_chain = get_tailor_chain()
|
94 |
-
# Cleaner chain
|
95 |
cleaner_chain = get_cleaner_chain()
|
96 |
|
97 |
-
|
98 |
-
# 5) Build our vectorstores + RAG chains
|
99 |
-
###############################################################################
|
100 |
wellness_csv = "AIChatbot.csv"
|
101 |
brand_csv = "BrandAI.csv"
|
102 |
wellness_store_dir = "faiss_wellness_store"
|
@@ -109,33 +77,25 @@ gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("
|
|
109 |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
110 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
search_tool = DuckDuckGoSearchTool()
|
116 |
-
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
|
117 |
-
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
|
118 |
-
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])
|
119 |
-
|
120 |
-
def do_web_search(query: str) -> str:
|
121 |
-
print("DEBUG: Attempting web search for more info...")
|
122 |
-
search_query = f"Give me relevant info: {query}"
|
123 |
-
response = manager_agent.run(search_query)
|
124 |
-
return response
|
125 |
-
|
126 |
-
###############################################################################
|
127 |
-
# 7) Orchestrator: run_with_chain
|
128 |
-
###############################################################################
|
129 |
def run_with_chain(query: str) -> str:
|
130 |
print("DEBUG: Starting run_with_chain...")
|
131 |
-
|
|
|
132 |
class_result = classification_chain.invoke({"query": query})
|
133 |
classification = class_result.get("text", "").strip()
|
134 |
print("DEBUG: Classification =>", classification)
|
135 |
|
136 |
# If OutOfScope => refusal => tailor => return
|
137 |
if classification == "OutOfScope":
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
139 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
140 |
return final_refusal.strip()
|
141 |
|
@@ -164,6 +124,6 @@ def run_with_chain(query: str) -> str:
|
|
164 |
return final_answer.strip()
|
165 |
|
166 |
# fallback
|
167 |
-
refusal_text = refusal_chain.run({})
|
168 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
169 |
return final_refusal.strip()
|
|
|
|
|
1 |
import os
|
2 |
import getpass
|
3 |
+
import spacy # Import spaCy for NER functionality
|
4 |
import pandas as pd
|
5 |
from typing import Optional
|
|
|
6 |
from langchain.docstore.document import Document
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain.vectorstores import FAISS
|
9 |
from langchain.chains import RetrievalQA
|
|
|
10 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
11 |
import litellm
|
12 |
|
13 |
+
# Import the chain builders from our separate files
|
14 |
from classification_chain import get_classification_chain
|
15 |
from refusal_chain import get_refusal_chain
|
16 |
from tailor_chain import get_tailor_chain
|
|
|
19 |
# We also import the relevant RAG logic here or define it directly
|
20 |
# (We define build_rag_chain in this file for clarity)
|
21 |
|
|
|
22 |
# 1) Environment: set up keys if missing
|
|
|
23 |
if not os.environ.get("GEMINI_API_KEY"):
|
24 |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
25 |
if not os.environ.get("GROQ_API_KEY"):
|
26 |
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
|
27 |
|
28 |
+
# 2) Load spaCy model for NER
|
29 |
+
nlp = spacy.load("en_core_web_sm")
|
30 |
+
|
31 |
+
# Function to extract the main topic using NER
|
32 |
+
def extract_main_topic(query: str) -> str:
|
33 |
+
"""
|
34 |
+
Extracts the main topic from the user's query using spaCy's NER.
|
35 |
+
Returns the first named entity or noun found in the query.
|
36 |
+
"""
|
37 |
+
doc = nlp(query)
|
38 |
+
|
39 |
+
# Try to extract the main topic as a named entity (person, product, etc.)
|
40 |
+
main_topic = None
|
41 |
+
for ent in doc.ents:
|
42 |
+
# Filter for specific entity types (you can adjust this based on your needs)
|
43 |
+
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: # Add more entity labels as needed
|
44 |
+
main_topic = ent.text
|
45 |
+
break
|
46 |
+
|
47 |
+
# If no named entity found, fallback to extracting the first noun or proper noun
|
48 |
+
if not main_topic:
|
49 |
+
for token in doc:
|
50 |
+
if token.pos_ in ["NOUN", "PROPN"]: # Extract first noun or proper noun
|
51 |
+
main_topic = token.text
|
52 |
+
break
|
53 |
+
|
54 |
+
# Return the extracted topic or a fallback value if no topic is found
|
55 |
+
return main_topic if main_topic else "this topic"
|
56 |
+
|
57 |
+
# 3) build_or_load_vectorstore (no changes)
|
58 |
+
|
59 |
+
# 4) Build RAG chain for Gemini (no changes)
|
60 |
+
|
61 |
+
# 5) Initialize all the separate chains
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
classification_chain = get_classification_chain()
|
63 |
+
refusal_chain = get_refusal_chain() # Refusal chain will now use dynamic topic
|
|
|
|
|
64 |
tailor_chain = get_tailor_chain()
|
|
|
65 |
cleaner_chain = get_cleaner_chain()
|
66 |
|
67 |
+
# 6) Build our vectorstores + RAG chains
|
|
|
|
|
68 |
wellness_csv = "AIChatbot.csv"
|
69 |
brand_csv = "BrandAI.csv"
|
70 |
wellness_store_dir = "faiss_wellness_store"
|
|
|
77 |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
78 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
79 |
|
80 |
+
# 7) Tools / Agents for web search (no changes)
|
81 |
+
|
82 |
+
# 8) Orchestrator: run_with_chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def run_with_chain(query: str) -> str:
|
84 |
print("DEBUG: Starting run_with_chain...")
|
85 |
+
|
86 |
+
# 1) Classify the query
|
87 |
class_result = classification_chain.invoke({"query": query})
|
88 |
classification = class_result.get("text", "").strip()
|
89 |
print("DEBUG: Classification =>", classification)
|
90 |
|
91 |
# If OutOfScope => refusal => tailor => return
|
92 |
if classification == "OutOfScope":
|
93 |
+
# Extract the main topic for the refusal message
|
94 |
+
topic = extract_main_topic(query)
|
95 |
+
print("DEBUG: Extracted Topic =>", topic)
|
96 |
+
|
97 |
+
# Pass the extracted topic to the refusal chain
|
98 |
+
refusal_text = refusal_chain.run({"topic": topic})
|
99 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
100 |
return final_refusal.strip()
|
101 |
|
|
|
124 |
return final_answer.strip()
|
125 |
|
126 |
# fallback
|
127 |
+
refusal_text = refusal_chain.run({"topic": "this topic"})
|
128 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
129 |
return final_refusal.strip()
|