Spaces:
Sleeping
Sleeping
Update pipeline.py
Browse files- pipeline.py +18 -18
pipeline.py
CHANGED
@@ -25,6 +25,9 @@ from prompts import classification_prompt, refusal_prompt, tailor_prompt
|
|
25 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
26 |
client = Mistral(api_key=mistral_api_key)
|
27 |
|
|
|
|
|
|
|
28 |
# Pydantic models for validation and type safety
|
29 |
class QueryInput(BaseModel):
|
30 |
query: str = Field(..., min_length=1, description="The input query string")
|
@@ -51,6 +54,14 @@ class RAGResponse(BaseModel):
|
|
51 |
sources: List[str] = Field(default_factory=list, description="Source documents used")
|
52 |
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score of the answer")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Load spaCy model for NER
|
55 |
def install_spacy_model():
|
56 |
try:
|
@@ -70,13 +81,11 @@ def extract_main_topic(query: str) -> str:
|
|
70 |
doc = nlp(query_input.query)
|
71 |
main_topic = None
|
72 |
|
73 |
-
# Try to find named entities first
|
74 |
for ent in doc.ents:
|
75 |
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
|
76 |
main_topic = ent.text
|
77 |
break
|
78 |
|
79 |
-
# If no named entities found, look for nouns
|
80 |
if not main_topic:
|
81 |
for token in doc:
|
82 |
if token.pos_ in ["NOUN", "PROPN"]:
|
@@ -157,7 +166,6 @@ def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
|
157 |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
158 |
df.columns = df.columns.str.strip()
|
159 |
|
160 |
-
# Handle column name variations
|
161 |
if "Answer" in df.columns:
|
162 |
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
163 |
if "Question" not in df.columns and "Question " in df.columns:
|
@@ -228,25 +236,13 @@ def merge_responses(kb_answer: str, web_answer: str) -> str:
|
|
228 |
return f"Knowledge Base Answer: {kb_answer.strip()}\n\nWeb Search Result: {web_answer.strip()}"
|
229 |
except Exception as e:
|
230 |
return f"Error merging responses: {str(e)}"
|
231 |
-
def sanitize_message(message: Any) -> str:
|
232 |
-
"""Sanitize message input to ensure it's a valid string."""
|
233 |
-
if hasattr(message, 'content'):
|
234 |
-
return str(message.content)
|
235 |
-
if isinstance(message, (list, dict)):
|
236 |
-
return str(message)
|
237 |
-
return str(message)
|
238 |
|
239 |
-
# Modify your run_pipeline function to include the sanitization
|
240 |
def run_pipeline(query: str) -> str:
|
241 |
try:
|
242 |
-
# Sanitize input
|
243 |
query = sanitize_message(query)
|
244 |
|
245 |
-
#
|
246 |
-
moderation_result = moderate_text(query)
|
247 |
-
if not moderation_result.is_safe:
|
248 |
-
return "Sorry, this query contains harmful or inappropriate content."
|
249 |
-
# Validate and moderate input
|
250 |
moderation_result = moderate_text(query)
|
251 |
if not moderation_result.is_safe:
|
252 |
return "Sorry, this query contains harmful or inappropriate content."
|
@@ -254,11 +250,11 @@ def run_pipeline(query: str) -> str:
|
|
254 |
# Classify the query
|
255 |
classification_result = classify_query(moderation_result.original_text)
|
256 |
|
|
|
257 |
if classification_result.category == "OutOfScope":
|
258 |
refusal_text = refusal_chain.run({"topic": "this topic"})
|
259 |
return tailor_chain.run({"response": refusal_text}).strip()
|
260 |
|
261 |
-
# Handle different classifications
|
262 |
if classification_result.category == "Wellness":
|
263 |
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
264 |
csv_answer = rag_result["result"].strip()
|
@@ -281,19 +277,23 @@ def run_pipeline(query: str) -> str:
|
|
281 |
|
282 |
# Initialize chains and vectorstores
|
283 |
try:
|
|
|
284 |
classification_chain = get_classification_chain()
|
285 |
refusal_chain = get_refusal_chain()
|
286 |
tailor_chain = get_tailor_chain()
|
287 |
cleaner_chain = get_cleaner_chain()
|
288 |
|
|
|
289 |
wellness_csv = "AIChatbot.csv"
|
290 |
brand_csv = "BrandAI.csv"
|
291 |
wellness_store_dir = "faiss_wellness_store"
|
292 |
brand_store_dir = "faiss_brand_store"
|
293 |
|
|
|
294 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
295 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
296 |
|
|
|
297 |
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
298 |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
299 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
|
|
25 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
26 |
client = Mistral(api_key=mistral_api_key)
|
27 |
|
28 |
+
# Initialize LiteLLM model for web search
|
29 |
+
pydantic_agent = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
30 |
+
|
31 |
# Pydantic models for validation and type safety
|
32 |
class QueryInput(BaseModel):
|
33 |
query: str = Field(..., min_length=1, description="The input query string")
|
|
|
54 |
sources: List[str] = Field(default_factory=list, description="Source documents used")
|
55 |
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score of the answer")
|
56 |
|
57 |
+
def sanitize_message(message: Any) -> str:
|
58 |
+
"""Sanitize message input to ensure it's a valid string."""
|
59 |
+
if hasattr(message, 'content'):
|
60 |
+
return str(message.content)
|
61 |
+
if isinstance(message, (list, dict)):
|
62 |
+
return str(message)
|
63 |
+
return str(message)
|
64 |
+
|
65 |
# Load spaCy model for NER
|
66 |
def install_spacy_model():
|
67 |
try:
|
|
|
81 |
doc = nlp(query_input.query)
|
82 |
main_topic = None
|
83 |
|
|
|
84 |
for ent in doc.ents:
|
85 |
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
|
86 |
main_topic = ent.text
|
87 |
break
|
88 |
|
|
|
89 |
if not main_topic:
|
90 |
for token in doc:
|
91 |
if token.pos_ in ["NOUN", "PROPN"]:
|
|
|
166 |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
167 |
df.columns = df.columns.str.strip()
|
168 |
|
|
|
169 |
if "Answer" in df.columns:
|
170 |
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
171 |
if "Question" not in df.columns and "Question " in df.columns:
|
|
|
236 |
return f"Knowledge Base Answer: {kb_answer.strip()}\n\nWeb Search Result: {web_answer.strip()}"
|
237 |
except Exception as e:
|
238 |
return f"Error merging responses: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
|
|
240 |
def run_pipeline(query: str) -> str:
|
241 |
try:
|
242 |
+
# Sanitize and validate input
|
243 |
query = sanitize_message(query)
|
244 |
|
245 |
+
# Moderate content
|
|
|
|
|
|
|
|
|
246 |
moderation_result = moderate_text(query)
|
247 |
if not moderation_result.is_safe:
|
248 |
return "Sorry, this query contains harmful or inappropriate content."
|
|
|
250 |
# Classify the query
|
251 |
classification_result = classify_query(moderation_result.original_text)
|
252 |
|
253 |
+
# Handle different classifications
|
254 |
if classification_result.category == "OutOfScope":
|
255 |
refusal_text = refusal_chain.run({"topic": "this topic"})
|
256 |
return tailor_chain.run({"response": refusal_text}).strip()
|
257 |
|
|
|
258 |
if classification_result.category == "Wellness":
|
259 |
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
260 |
csv_answer = rag_result["result"].strip()
|
|
|
277 |
|
278 |
# Initialize chains and vectorstores
|
279 |
try:
|
280 |
+
# Initialize chain components
|
281 |
classification_chain = get_classification_chain()
|
282 |
refusal_chain = get_refusal_chain()
|
283 |
tailor_chain = get_tailor_chain()
|
284 |
cleaner_chain = get_cleaner_chain()
|
285 |
|
286 |
+
# Set up paths
|
287 |
wellness_csv = "AIChatbot.csv"
|
288 |
brand_csv = "BrandAI.csv"
|
289 |
wellness_store_dir = "faiss_wellness_store"
|
290 |
brand_store_dir = "faiss_brand_store"
|
291 |
|
292 |
+
# Build or load vectorstores
|
293 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
294 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
295 |
|
296 |
+
# Initialize LLM and RAG chains
|
297 |
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
298 |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
299 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|