Spaces:
Running
Running
to handel pydantic error
Browse files- pipeline.py +115 -53
pipeline.py
CHANGED
@@ -9,12 +9,13 @@ from langchain.docstore.document import Document
|
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.chains import RetrievalQA
|
12 |
-
from smolagents import
|
13 |
from pydantic import BaseModel, Field, ValidationError, validator
|
14 |
from mistralai import Mistral
|
15 |
-
from langchain.prompts import PromptTemplate
|
16 |
|
17 |
-
# Import
|
|
|
|
|
18 |
from classification_chain import get_classification_chain
|
19 |
from cleaner_chain import get_cleaner_chain
|
20 |
from refusal_chain import get_refusal_chain
|
@@ -25,10 +26,25 @@ from prompts import classification_prompt, refusal_prompt, tailor_prompt
|
|
25 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
26 |
client = Mistral(api_key=mistral_api_key)
|
27 |
|
28 |
-
#
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
# Pydantic models for validation and type safety
|
32 |
class QueryInput(BaseModel):
|
33 |
query: str = Field(..., min_length=1, description="The input query string")
|
34 |
|
@@ -45,7 +61,6 @@ class ModerationResult(BaseModel):
|
|
45 |
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
|
46 |
original_text: str = Field(..., description="The original input text")
|
47 |
|
48 |
-
# Load spaCy model for NER
|
49 |
def install_spacy_model():
|
50 |
try:
|
51 |
spacy.load("en_core_web_sm")
|
@@ -58,6 +73,22 @@ def install_spacy_model():
|
|
58 |
install_spacy_model()
|
59 |
nlp = spacy.load("en_core_web_sm")
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def extract_main_topic(query: str) -> str:
|
62 |
try:
|
63 |
query_input = QueryInput(query=query)
|
@@ -160,55 +191,76 @@ def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
|
160 |
except Exception as e:
|
161 |
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
173 |
try:
|
174 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
175 |
-
|
176 |
-
|
177 |
-
llm=
|
178 |
chain_type="stuff",
|
179 |
retriever=retriever,
|
180 |
return_source_documents=True
|
181 |
)
|
|
|
182 |
except Exception as e:
|
183 |
raise RuntimeError(f"Error building RAG chain: {str(e)}")
|
184 |
-
|
185 |
-
|
186 |
-
def sanitize_message(message: Any) -> str:
|
187 |
-
"""Sanitize message input to ensure it's a valid string."""
|
188 |
try:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
return str(message)
|
194 |
except Exception as e:
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
def run_pipeline(query: str) -> str:
|
199 |
try:
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
raise RuntimeError(f"Error in run_runpipeline check classify_query: {str(e)}")
|
212 |
|
213 |
if classification == "OutOfScope":
|
214 |
refusal_text = refusal_chain.run({"topic": topic})
|
@@ -216,22 +268,37 @@ def run_pipeline(query: str) -> str:
|
|
216 |
|
217 |
if classification == "Wellness":
|
218 |
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
219 |
-
|
|
|
|
|
|
|
220 |
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
|
221 |
final_merged = merge_responses(csv_answer, web_answer)
|
222 |
return tailor_chain.run({"response": final_merged}).strip()
|
223 |
|
224 |
if classification == "Brand":
|
225 |
rag_result = brand_rag_chain({"query": moderation_result.original_text})
|
226 |
-
|
|
|
|
|
|
|
227 |
final_merged = merge_responses(csv_answer, "")
|
228 |
return tailor_chain.run({"response": final_merged}).strip()
|
229 |
|
230 |
refusal_text = refusal_chain.run({"topic": topic})
|
231 |
return tailor_chain.run({"response": refusal_text}).strip()
|
232 |
-
except Exception as e:
|
233 |
-
raise RuntimeError(f"Error in run_runpipeline: {str(e)}")
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
# Initialize chains and vectorstores
|
237 |
classification_chain = get_classification_chain()
|
@@ -247,12 +314,7 @@ brand_store_dir = "faiss_brand_store"
|
|
247 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
248 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
253 |
|
254 |
print("Pipeline initialized successfully!")
|
255 |
-
|
256 |
-
|
257 |
-
def run_with_chain(query: str) -> str:
|
258 |
-
return run_pipeline(query)
|
|
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.chains import RetrievalQA
|
12 |
+
from smolagents import DuckDuckGoSearchTool, ManagedAgent
|
13 |
from pydantic import BaseModel, Field, ValidationError, validator
|
14 |
from mistralai import Mistral
|
|
|
15 |
|
16 |
+
# Import Google Gemini model
|
17 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
18 |
+
|
19 |
from classification_chain import get_classification_chain
|
20 |
from cleaner_chain import get_cleaner_chain
|
21 |
from refusal_chain import get_refusal_chain
|
|
|
26 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
27 |
client = Mistral(api_key=mistral_api_key)
|
28 |
|
29 |
+
# Setup ChatGoogleGenerativeAI for Gemini
|
30 |
+
# Ensure GOOGLE_API_KEY is set in your environment variables.
|
31 |
+
gemini_llm = ChatGoogleGenerativeAI(
|
32 |
+
model="gemini-1.5-pro",
|
33 |
+
temperature=0,
|
34 |
+
max_retries=2,
|
35 |
+
# You can add additional parameters or safety_settings here if needed
|
36 |
+
)
|
37 |
+
|
38 |
+
# Initialize LiteLLM model for web search (if needed)
|
39 |
+
pydantic_agent = ManagedAgent(
|
40 |
+
llm=ChatGoogleGenerativeAI(
|
41 |
+
model="gemini-1.5-pro",
|
42 |
+
temperature=0,
|
43 |
+
max_retries=2,
|
44 |
+
),
|
45 |
+
tools=[DuckDuckGoSearchTool()]
|
46 |
+
)
|
47 |
|
|
|
48 |
class QueryInput(BaseModel):
|
49 |
query: str = Field(..., min_length=1, description="The input query string")
|
50 |
|
|
|
61 |
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
|
62 |
original_text: str = Field(..., description="The original input text")
|
63 |
|
|
|
64 |
def install_spacy_model():
|
65 |
try:
|
66 |
spacy.load("en_core_web_sm")
|
|
|
73 |
install_spacy_model()
|
74 |
nlp = spacy.load("en_core_web_sm")
|
75 |
|
76 |
+
def sanitize_message(message: Any) -> str:
|
77 |
+
"""Sanitize message input to ensure it's a valid string."""
|
78 |
+
try:
|
79 |
+
if hasattr(message, 'content'):
|
80 |
+
return str(message.content).strip()
|
81 |
+
if isinstance(message, dict) and 'content' in message:
|
82 |
+
return str(message['content']).strip()
|
83 |
+
if isinstance(message, list) and len(message) > 0:
|
84 |
+
if isinstance(message[0], dict) and 'content' in message[0]:
|
85 |
+
return str(message[0]['content']).strip()
|
86 |
+
if hasattr(message[0], 'content'):
|
87 |
+
return str(message[0].content).strip()
|
88 |
+
return str(message).strip()
|
89 |
+
except Exception as e:
|
90 |
+
raise RuntimeError(f"Error in sanitize function: {str(e)}")
|
91 |
+
|
92 |
def extract_main_topic(query: str) -> str:
|
93 |
try:
|
94 |
query_input = QueryInput(query=query)
|
|
|
191 |
except Exception as e:
|
192 |
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
|
193 |
|
194 |
+
class GeminiLangChainLLM(LLM):
|
195 |
+
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
196 |
+
"""Call the Gemini model using ChatGoogleGenerativeAI and ensure string output."""
|
197 |
+
try:
|
198 |
+
# Construct message list for the Gemini model
|
199 |
+
messages = [("human", prompt)]
|
200 |
+
ai_msg = gemini_llm.invoke(messages)
|
201 |
+
return ai_msg.content.strip() if ai_msg and ai_msg.content else str(prompt)
|
202 |
+
except Exception as e:
|
203 |
+
print(f"Error in GeminiLangChainLLM._call: {e}")
|
204 |
+
return str(prompt) # Fallback to returning the prompt
|
205 |
|
206 |
+
@property
|
207 |
+
def _llm_type(self) -> str:
|
208 |
+
return "custom_gemini"
|
209 |
+
|
210 |
+
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA:
|
211 |
+
"""Build RAG chain with enhanced error handling."""
|
212 |
try:
|
213 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
214 |
+
gemini_llm_instance = GeminiLangChainLLM()
|
215 |
+
chain = RetrievalQA.from_chain_type(
|
216 |
+
llm=gemini_llm_instance,
|
217 |
chain_type="stuff",
|
218 |
retriever=retriever,
|
219 |
return_source_documents=True
|
220 |
)
|
221 |
+
return chain
|
222 |
except Exception as e:
|
223 |
raise RuntimeError(f"Error building RAG chain: {str(e)}")
|
224 |
+
|
225 |
+
def do_web_search(query: str) -> str:
|
|
|
|
|
226 |
try:
|
227 |
+
search_tool = DuckDuckGoSearchTool()
|
228 |
+
search_agent = ManagedAgent(llm=gemini_llm, tools=[search_tool])
|
229 |
+
search_result = search_agent.run(f"Search for information about: {query}")
|
230 |
+
return str(search_result).strip()
|
|
|
231 |
except Exception as e:
|
232 |
+
print(f"Web search failed: {e}")
|
233 |
+
return ""
|
234 |
+
|
235 |
+
def merge_responses(csv_answer: str, web_answer: str) -> str:
|
236 |
+
try:
|
237 |
+
if not csv_answer and not web_answer:
|
238 |
+
return "I apologize, but I couldn't find any relevant information."
|
239 |
|
240 |
+
if not web_answer:
|
241 |
+
return csv_answer
|
242 |
+
|
243 |
+
if not csv_answer:
|
244 |
+
return web_answer
|
245 |
+
|
246 |
+
return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}"
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Error merging responses: {e}")
|
249 |
+
return csv_answer or web_answer or "I apologize, but I couldn't process the information properly."
|
250 |
+
|
251 |
def run_pipeline(query: str) -> str:
|
252 |
try:
|
253 |
+
print(query)
|
254 |
+
sanitized_query = sanitize_message(query)
|
255 |
+
query_input = QueryInput(query=sanitized_query)
|
256 |
+
|
257 |
+
topic = extract_main_topic(query_input.query)
|
258 |
+
moderation_result = moderate_text(query_input.query)
|
259 |
+
|
260 |
+
if not moderation_result.is_safe:
|
261 |
+
return "Sorry, this query contains harmful or inappropriate content."
|
262 |
+
|
263 |
+
classification = classify_query(moderation_result.original_text)
|
|
|
264 |
|
265 |
if classification == "OutOfScope":
|
266 |
refusal_text = refusal_chain.run({"topic": topic})
|
|
|
268 |
|
269 |
if classification == "Wellness":
|
270 |
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
271 |
+
if isinstance(rag_result, dict) and "result" in rag_result:
|
272 |
+
csv_answer = str(rag_result["result"]).strip()
|
273 |
+
else:
|
274 |
+
csv_answer = str(rag_result).strip()
|
275 |
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
|
276 |
final_merged = merge_responses(csv_answer, web_answer)
|
277 |
return tailor_chain.run({"response": final_merged}).strip()
|
278 |
|
279 |
if classification == "Brand":
|
280 |
rag_result = brand_rag_chain({"query": moderation_result.original_text})
|
281 |
+
if isinstance(rag_result, dict) and "result" in rag_result:
|
282 |
+
csv_answer = str(rag_result["result"]).strip()
|
283 |
+
else:
|
284 |
+
csv_answer = str(rag_result).strip()
|
285 |
final_merged = merge_responses(csv_answer, "")
|
286 |
return tailor_chain.run({"response": final_merged}).strip()
|
287 |
|
288 |
refusal_text = refusal_chain.run({"topic": topic})
|
289 |
return tailor_chain.run({"response": refusal_text}).strip()
|
|
|
|
|
290 |
|
291 |
+
except ValidationError as e:
|
292 |
+
raise ValueError(f"Input validation failed: {str(e)}")
|
293 |
+
except Exception as e:
|
294 |
+
raise RuntimeError(f"Error in run_pipeline: {str(e)}")
|
295 |
+
|
296 |
+
def run_with_chain(query: str) -> str:
|
297 |
+
try:
|
298 |
+
return run_pipeline(query)
|
299 |
+
except Exception as e:
|
300 |
+
print(f"Error in run_with_chain: {str(e)}")
|
301 |
+
return "I apologize, but I encountered an error processing your request. Please try again."
|
302 |
|
303 |
# Initialize chains and vectorstores
|
304 |
classification_chain = get_classification_chain()
|
|
|
314 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
315 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
316 |
|
317 |
+
wellness_rag_chain = build_rag_chain(wellness_vectorstore)
|
318 |
+
brand_rag_chain = build_rag_chain(brand_vectorstore)
|
|
|
319 |
|
320 |
print("Pipeline initialized successfully!")
|
|
|
|
|
|
|
|