# pipeline.py import os import getpass import pandas as pd from typing import Optional from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel import litellm # We import the chain builders from our separate files from classification_chain import get_classification_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from cleaner_chain import get_cleaner_chain, CleanerChain # We also import the relevant RAG logic here or define it directly # (We define build_rag_chain in this file for clarity) ############################################################################### # 1) Environment: set up keys if missing ############################################################################### if not os.environ.get("GEMINI_API_KEY"): os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ") if not os.environ.get("GROQ_API_KEY"): os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ") ############################################################################### # 2) build_or_load_vectorstore ############################################################################### def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: if os.path.exists(store_dir): print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.load_local(store_dir, embeddings) return vectorstore else: print(f"DEBUG: Building new store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns.") docs = [] for _, row in df.iterrows(): q = str(row["Question"]) ans = str(row["Answers"]) doc = Document(page_content=ans, metadata={"question": q}) docs.append(doc) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore ############################################################################### # 3) Build RAG chain for Gemini ############################################################################### from langchain.llms.base import LLM def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: class GeminiLangChainLLM(LLM): def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: messages = [{"role": "user", "content": prompt}] return llm_model(messages, stop_sequences=stop) @property def _llm_type(self) -> str: return "custom_gemini" retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) gemini_as_llm = GeminiLangChainLLM() rag_chain = RetrievalQA.from_chain_type( llm=gemini_as_llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) return rag_chain ############################################################################### # 4) Initialize all the separate chains ############################################################################### # Classification chain classification_chain = get_classification_chain() # Refusal chain refusal_chain = get_refusal_chain() # Tailor chain tailor_chain = get_tailor_chain() # Cleaner chain cleaner_chain = get_cleaner_chain() ############################################################################### # 5) Build our vectorstores + RAG chains ############################################################################### wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) ############################################################################### # 6) Tools / Agents for web search ############################################################################### search_tool = DuckDuckGoSearchTool() web_agent = CodeAgent(tools=[search_tool], model=gemini_llm) managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.") manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent]) def do_web_search(query: str) -> str: print("DEBUG: Attempting web search for more info...") search_query = f"Give me relevant info: {query}" response = manager_agent.run(search_query) return response ############################################################################### # 7) Orchestrator: run_with_chain ############################################################################### def run_with_chain(query: str) -> str: print("DEBUG: Starting run_with_chain...") # 1) Classify class_result = classification_chain.invoke({"query": query}) classification = class_result.get("text", "").strip() print("DEBUG: Classification =>", classification) # If OutOfScope => refusal => tailor => return if classification == "OutOfScope": refusal_text = refusal_chain.run({}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip() # If Wellness => wellness RAG => if insufficient => web => unify => tailor if classification == "Wellness": rag_result = wellness_rag_chain({"query": query}) csv_answer = rag_result["result"].strip() if not csv_answer: web_answer = do_web_search(query) else: lower_ans = csv_answer.lower() if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]): web_answer = do_web_search(query) else: web_answer = "" final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer) final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() # If Brand => brand RAG => tailor => return if classification == "Brand": rag_result = brand_rag_chain({"query": query}) csv_answer = rag_result["result"].strip() final_merged = cleaner_chain.merge(kb=csv_answer, web="") final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() # fallback refusal_text = refusal_chain.run({}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip()