import os import getpass import spacy # Import spaCy for NER functionality import pandas as pd from typing import Optional from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel # import litellm # Import the chain builders from our separate files from classification_chain import get_classification_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from cleaner_chain import get_cleaner_chain, CleanerChain # 1) Environment: set up keys if missing if not os.environ.get("GEMINI_API_KEY"): os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ") if not os.environ.get("GROQ_API_KEY"): os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ") # 2) Load spaCy model for NER nlp = spacy.load("en_core_web_sm") # Function to extract the main topic using NER def extract_main_topic(query: str) -> str: """ Extracts the main topic from the user's query using spaCy's NER. Returns the first named entity or noun found in the query. """ doc = nlp(query) # Try to extract the main topic as a named entity (person, product, etc.) main_topic = None for ent in doc.ents: # Filter for specific entity types (you can adjust this based on your needs) if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: # Add more entity labels as needed main_topic = ent.text break # If no named entity found, fallback to extracting the first noun or proper noun if not main_topic: for token in doc: if token.pos_ in ["NOUN", "PROPN"]: # Extract first noun or proper noun main_topic = token.text break # Return the extracted topic or a fallback value if no topic is found return main_topic if main_topic else "this topic" # 3) build_or_load_vectorstore (no changes) def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: if os.path.exists(store_dir): print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.load_local(store_dir, embeddings) return vectorstore else: print(f"DEBUG: Building new store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns.") docs = [] for _, row in df.iterrows(): q = str(row["Question"]) ans = str(row["Answers"]) doc = Document(page_content=ans, metadata={"question": q}) docs.append(doc) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore # 4) Build RAG chain for Gemini (no changes) def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: class GeminiLangChainLLM(LLM): def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: messages = [{"role": "user", "content": prompt}] return llm_model(messages, stop_sequences=stop) @property def _llm_type(self) -> str: return "custom_gemini" retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) gemini_as_llm = GeminiLangChainLLM() rag_chain = RetrievalQA.from_chain_type( llm=gemini_as_llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) return rag_chain # 5) Initialize all the separate chains classification_chain = get_classification_chain() refusal_chain = get_refusal_chain() # Refusal chain will now use dynamic topic tailor_chain = get_tailor_chain() cleaner_chain = get_cleaner_chain() # 6) Build our vectorstores + RAG chains wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) # 7) Tools / Agents for web search (no changes) search_tool = DuckDuckGoSearchTool() web_agent = CodeAgent(tools=[search_tool], model=gemini_llm) managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.") manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent]) def do_web_search(query: str) -> str: print("DEBUG: Attempting web search for more info...") search_query = f"Give me relevant info: {query}" response = manager_agent.run(search_query) return response # 8) Orchestrator: run_with_chain def run_with_chain(query: str) -> str: print("DEBUG: Starting run_with_chain...") # 1) Classify the query class_result = classification_chain.invoke({"query": query}) classification = class_result.get("text", "").strip() print("DEBUG: Classification =>", classification) # If OutOfScope => refusal => tailor => return if classification == "OutOfScope": # Extract the main topic for the refusal message topic = extract_main_topic(query) print("DEBUG: Extracted Topic =>", topic) # Pass the extracted topic to the refusal chain refusal_text = refusal_chain.run({"topic": topic}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip() # If Wellness => wellness RAG => if insufficient => web => unify => tailor if classification == "Wellness": rag_result = wellness_rag_chain({"query": query}) csv_answer = rag_result["result"].strip() if not csv_answer: web_answer = do_web_search(query) else: lower_ans = csv_answer.lower() if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]): web_answer = do_web_search(query) else: web_answer = "" final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer) final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() # If Brand => brand RAG => tailor => return if classification == "Brand": rag_result = brand_rag_chain({"query": query}) csv_answer = rag_result["result"].strip() final_merged = cleaner_chain.merge(kb=csv_answer, web="") final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() # fallback refusal_text = refusal_chain.run({"topic": "this topic"}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip()