File size: 8,973 Bytes
5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 dda567b 5fb8b32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
import pandas as pd
from datasets import Dataset
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
import torch
import os
import matplotlib.pyplot as plt
import json
import io
from datetime import datetime
# Variables globales pour stocker les colonnes détectées
columns = []
# Fonction pour lire le fichier et détecter les colonnes
def read_file(data_file):
global columns
try:
# Charger les données
file_extension = os.path.splitext(data_file.name)[1]
if file_extension == '.csv':
df = pd.read_csv(data_file.name)
elif file_extension == '.json':
df = pd.read_json(data_file.name)
elif file_extension == '.xlsx':
df = pd.read_excel(data_file.name)
else:
return "Invalid file format. Please upload a CSV, JSON, or Excel file."
# Détecter les colonnes
columns = df.columns.tolist()
return columns
except Exception as e:
return f"An error occurred: {str(e)}"
# Fonction pour valider les colonnes sélectionnées
def validate_columns(prompt_col, description_col):
if prompt_col not in columns or description_col not in columns:
return False
return True
# Fonction pour entraîner le modèle
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col):
try:
# Valider les colonnes sélectionnées
if not validate_columns(prompt_col, description_col):
return "Invalid column selection. Please ensure the columns exist in the dataset."
# Charger les données
file_extension = os.path.splitext(data_file.name)[1]
if file_extension == '.csv':
df = pd.read_csv(data_file.name)
elif file_extension == '.json':
df = pd.read_json(data_file.name)
elif file_extension == '.xlsx':
df = pd.read_excel(data_file.name)
# Prévisualisation des données
preview = df.head().to_string(index=False)
# Préparer le texte d'entraînement
df['text'] = df[prompt_col] + ': ' + df[description_col]
dataset = Dataset.from_pandas(df[['text']])
# Initialiser le tokenizer et le modèle GPT-2
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
# Ajouter un token de padding si nécessaire
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
# Tokenizer les données
def tokenize_function(examples):
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
tokens['labels'] = tokens['input_ids'].copy()
return tokens
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Ajustement des hyperparamètres
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=int(epochs),
per_device_train_batch_size=int(batch_size),
per_device_eval_batch_size=int(batch_size),
warmup_steps=1000,
weight_decay=0.01,
learning_rate=float(learning_rate),
logging_dir="./logs",
logging_steps=10,
save_steps=500,
save_total_limit=2,
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
metric_for_best_model="eval_loss"
)
# Configuration du Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets,
eval_dataset=tokenized_datasets,
)
# Entraînement et évaluation
trainer.train()
eval_results = trainer.evaluate()
# Sauvegarder le modèle fine-tuné
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
# Générer un graphique des pertes d'entraînement et de validation
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
plt.plot(train_loss, label='Training Loss')
plt.plot(eval_loss, label='Validation Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
return f"Training completed successfully.\nPreview of data:\n{preview}", eval_results
except Exception as e:
return f"An error occurred: {str(e)}"
# Fonction de génération de texte
def generate_text(prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma, batch_size):
try:
model_name = "./fine-tuned-gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
if use_comma:
prompt = prompt.replace('.', ',')
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
attention_mask = inputs.attention_mask
outputs = model.generate(
inputs.input_ids,
attention_mask=attention_mask,
max_length=int(max_length),
temperature=float(temperature),
top_k=int(top_k),
top_p=float(top_p),
repetition_penalty=float(repetition_penalty),
num_return_sequences=int(batch_size),
pad_token_id=tokenizer.eos_token_id
)
return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
except Exception as e:
return f"An error occurred: {str(e)}"
# Fonction pour configurer les presets
def set_preset(preset):
if preset == "Default":
return 5, 8, 3e-5
elif preset == "Fast Training":
return 3, 16, 5e-5
elif preset == "High Accuracy":
return 10, 4, 1e-5
# Interface Gradio
with gr.Blocks() as ui:
gr.Markdown("# Fine-Tune GPT-2 UI Design Model")
with gr.Tab("Train Model"):
with gr.Row():
data_file = gr.File(label="Upload Data File (CSV, JSON, Excel)")
model_name = gr.Textbox(label="Model Name", value="gpt2")
output_dir = gr.Textbox(label="Output Directory", value="./fine-tuned-gpt2")
with gr.Row():
preset = gr.Radio(["Default", "Fast Training", "High Accuracy"], label="Preset")
epochs = gr.Number(label="Epochs", value=5)
batch_size = gr.Number(label="Batch Size", value=8)
learning_rate = gr.Number(label="Learning Rate", value=3e-5)
preset.change(set_preset, preset, [epochs, batch_size, learning_rate])
# Champs pour sélectionner les colonnes
with gr.Row():
prompt_col = gr.Dropdown(label="Prompt Column")
description_col = gr.Dropdown(label="Description Column")
# Détection des colonnes lors du téléchargement du fichier
data_file.upload(read_file, inputs=data_file, outputs=[prompt_col, description_col])
train_button = gr.Button("Train Model")
train_output = gr.Textbox(label="Training Output")
train_graph = gr.Image(label="Training and Validation Loss Graph")
train_button.click(train_model,
inputs=[data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col,
description_col], outputs=[train_output, train_graph])
with gr.Tab("Generate Text"):
with gr.Row():
with gr.Column():
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=50)
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9)
max_length = gr.Slider(label="Max Length", minimum=10, maximum=1024, value=128)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2)
use_comma = gr.Checkbox(label="Use Comma", value=True)
batch_size = gr.Number(label="Batch Size", value=1, minimum=1)
with gr.Column():
prompt = gr.Textbox(label="Prompt")
generate_button = gr.Button("Generate Text")
generated_text = gr.Textbox(label="Generated Text", lines=20)
generate_button.click(generate_text,
inputs=[prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma,
batch_size], outputs=generated_text)
ui.launch()
|