File size: 9,270 Bytes
2c924d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import gradio as gr
from text_to_animation.model import ControlAnimationModel
import os
from utils.hf_utils import get_model_list

huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
on_huggingspace = huggingspace_name if huggingspace_name is not None else False

examples = [
    ["an astronaut waving the arm on the moon"],
    ["a sloth surfing on a wakeboard"],
    ["an astronaut walking on a street"],
    ["a cute cat walking on grass"],
    ["a horse is galloping on a street"],
    ["an astronaut is skiing down the hill"],
    ["a gorilla walking alone down the street"],
    ["a gorilla dancing on times square"],
    ["A panda dancing dancing like crazy on Times Square"],
]


images = []  # str path of generated images
initial_frame = None
animation_model = None


def generate_initial_frames(
    frames_prompt,
    model_link,
    is_safetensor,
    frames_n_prompt,
    width,
    height,
    cfg_scale,
    seed,
):
    global images

    if not model_link:
        model_link = "dreamlike-art/dreamlike-photoreal-2.0"

    images = animation_model.generate_initial_frames(
        frames_prompt,
        model_link,
        is_safetensor,
        frames_n_prompt,
        width,
        height,
        cfg_scale,
        seed,
    )

    return images


def select_initial_frame(evt: gr.SelectData):
    global initial_frame

    if evt.index < len(images):
        initial_frame = images[evt.index]
        print(initial_frame)


def create_demo(model: ControlAnimationModel):
    global animation_model
    animation_model = model

    with gr.Blocks() as demo:
        with gr.Column(visible=True) as frame_selection_col:
            with gr.Row():
                with gr.Column():
                    frames_prompt = gr.Textbox(
                        placeholder="Prompt", show_label=False, lines=4
                    )
                    frames_n_prompt = gr.Textbox(
                        placeholder="Negative Prompt (optional)",
                        show_label=False,
                        lines=2,
                    )

                with gr.Column():
                    model_link = gr.Textbox(
                        label="Model Link",
                        placeholder="dreamlike-art/dreamlike-photoreal-2.0",
                        info="Give the hugging face model name or URL link to safetensor.",
                    )
                    is_safetensor = gr.Checkbox(label="Safetensors")
                    gen_frames_button = gr.Button(
                        value="Generate Initial Frames", variant="primary"
                    )

            with gr.Row():
                with gr.Column(scale=2):
                    width = gr.Slider(32, 2048, value=512, label="Width")
                    height = gr.Slider(32, 2048, value=512, label="Height")
                    cfg_scale = gr.Slider(1, 20, value=7.0, step=0.1, label="CFG scale")
                    seed = gr.Slider(
                        label="Seed",
                        info="-1 for random seed on each run. Otherwise, the seed will be fixed.",
                        minimum=-1,
                        maximum=65536,
                        value=0,
                        step=1,
                    )

                with gr.Column(scale=3):
                    initial_frames = gr.Gallery(
                        label="Initial Frames", show_label=False
                    ).style(
                        columns=[2], rows=[2], object_fit="scale-down", height="auto"
                    )
                    initial_frames.select(select_initial_frame)
                    select_frame_button = gr.Button(
                        value="Select Initial Frame", variant="secondary"
                    )

        with gr.Column(visible=False) as gen_animation_col:
            with gr.Row():
                with gr.Column():
                    prompt = gr.Textbox(label="Prompt")
                    gen_animation_button = gr.Button(
                        value="Generate Animation", variant="primary"
                    )

                    with gr.Accordion("Advanced options", open=False):
                        n_prompt = gr.Textbox(
                            label="Negative Prompt (optional)", value=""
                        )

                        if on_huggingspace:
                            video_length = gr.Slider(
                                label="Video length", minimum=8, maximum=16, step=1
                            )
                        else:
                            video_length = gr.Number(
                                label="Video length", value=8, precision=0
                            )

                        seed = gr.Slider(
                            label="Seed",
                            info="-1 for random seed on each run. Otherwise, the seed will be fixed.",
                            minimum=-1,
                            maximum=65536,
                            value=0,
                            step=1,
                        )

                        motion_field_strength_x = gr.Slider(
                            label="Global Translation $\\delta_{x}$",
                            minimum=-20,
                            maximum=20,
                            value=12,
                            step=1,
                        )

                        motion_field_strength_y = gr.Slider(
                            label="Global Translation $\\delta_{y}$",
                            minimum=-20,
                            maximum=20,
                            value=12,
                            step=1,
                        )

                        t0 = gr.Slider(
                            label="Timestep t0",
                            minimum=0,
                            maximum=47,
                            value=44,
                            step=1,
                            info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1 ",
                        )

                        t1 = gr.Slider(
                            label="Timestep t1",
                            minimum=1,
                            info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1",
                            maximum=48,
                            value=47,
                            step=1,
                        )

                        chunk_size = gr.Slider(
                            label="Chunk size",
                            minimum=2,
                            maximum=16,
                            value=8,
                            step=1,
                            visible=not on_huggingspace,
                            info="Number of frames processed at once. Reduce for lower memory usage.",
                        )
                        merging_ratio = gr.Slider(
                            label="Merging ratio",
                            minimum=0.0,
                            maximum=0.9,
                            step=0.1,
                            value=0.0,
                            visible=not on_huggingspace,
                            info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).",
                        )

                with gr.Column():
                    result = gr.Video(label="Generated Video")

        inputs = [
            prompt,
            model_link,
            is_safetensor,
            motion_field_strength_x,
            motion_field_strength_y,
            t0,
            t1,
            n_prompt,
            chunk_size,
            video_length,
            merging_ratio,
            seed,
        ]

        # gr.Examples(examples=examples,
        #             inputs=inputs,
        #             outputs=result,
        #             fn=None,
        #             run_on_click=False,
        #             cache_examples=on_huggingspace,
        # )

        frame_inputs = [
            frames_prompt,
            model_link,
            is_safetensor,
            frames_n_prompt,
            width,
            height,
            cfg_scale,
            seed,
        ]

        def submit_select():
            show = True
            if initial_frame is not None:  # More to next step
                return {
                    frame_selection_col: gr.update(visible=not show),
                    gen_animation_col: gr.update(visible=show),
                }

            return {
                frame_selection_col: gr.update(visible=show),
                gen_animation_col: gr.update(visible=not show),
            }

        gen_frames_button.click(
            generate_initial_frames,
            inputs=frame_inputs,
            outputs=initial_frames,
        )
        select_frame_button.click(
            submit_select, inputs=None, outputs=[frame_selection_col, gen_animation_col]
        )

        gen_animation_button.click(
            fn=model.process_text2video,
            inputs=inputs,
            outputs=result,
        )

    return demo