File size: 7,507 Bytes
2c924d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import math
import numpy as np
import matplotlib
import cv2


def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad

# transfer caffe model to pytorch which will match the layer name
def transfer(model, model_weights):
    transfered_model_weights = {}
    for weights_name in model.state_dict().keys():
        transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
    return transfered_model_weights

# draw the body keypoint and lims
def draw_bodypose(canvas, candidate, subset):
    stickwidth = 4
    limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
               [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
               [1, 16], [16, 18], [3, 17], [6, 18]]

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
    for i in range(18):
        for n in range(len(subset)):
            index = int(subset[n][i])
            if index == -1:
                continue
            x, y = candidate[index][0:2]
            cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
    for i in range(17):
        for n in range(len(subset)):
            index = subset[n][np.array(limbSeq[i]) - 1]
            if -1 in index:
                continue
            cur_canvas = canvas.copy()
            Y = candidate[index.astype(int), 0]
            X = candidate[index.astype(int), 1]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
    # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
    # plt.imshow(canvas[:, :, [2, 1, 0]])
    return canvas


# image drawed by opencv is not good.
def draw_handpose(canvas, all_hand_peaks, show_number=False):
    edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
             [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]

    for peaks in all_hand_peaks:
        for ie, e in enumerate(edges):
            if np.sum(np.all(peaks[e], axis=1)==0)==0:
                x1, y1 = peaks[e[0]]
                x2, y2 = peaks[e[1]]
                cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)

        for i, keyponit in enumerate(peaks):
            x, y = keyponit
            cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
            if show_number:
                cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
    return canvas

# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
    # right hand: wrist 4, elbow 3, shoulder 2
    # left hand: wrist 7, elbow 6, shoulder 5
    ratioWristElbow = 0.33
    detect_result = []
    image_height, image_width = oriImg.shape[0:2]
    for person in subset.astype(int):
        # if any of three not detected
        has_left = np.sum(person[[5, 6, 7]] == -1) == 0
        has_right = np.sum(person[[2, 3, 4]] == -1) == 0
        if not (has_left or has_right):
            continue
        hands = []
        #left hand
        if has_left:
            left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
            x1, y1 = candidate[left_shoulder_index][:2]
            x2, y2 = candidate[left_elbow_index][:2]
            x3, y3 = candidate[left_wrist_index][:2]
            hands.append([x1, y1, x2, y2, x3, y3, True])
        # right hand
        if has_right:
            right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
            x1, y1 = candidate[right_shoulder_index][:2]
            x2, y2 = candidate[right_elbow_index][:2]
            x3, y3 = candidate[right_wrist_index][:2]
            hands.append([x1, y1, x2, y2, x3, y3, False])

        for x1, y1, x2, y2, x3, y3, is_left in hands:
            # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
            # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
            # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
            # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
            # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
            # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
            x = x3 + ratioWristElbow * (x3 - x2)
            y = y3 + ratioWristElbow * (y3 - y2)
            distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
            distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
            width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
            # x-y refers to the center --> offset to topLeft point
            # handRectangle.x -= handRectangle.width / 2.f;
            # handRectangle.y -= handRectangle.height / 2.f;
            x -= width / 2
            y -= width / 2  # width = height
            # overflow the image
            if x < 0: x = 0
            if y < 0: y = 0
            width1 = width
            width2 = width
            if x + width > image_width: width1 = image_width - x
            if y + width > image_height: width2 = image_height - y
            width = min(width1, width2)
            # the max hand box value is 20 pixels
            if width >= 20:
                detect_result.append([int(x), int(y), int(width), is_left])

    '''
    return value: [[x, y, w, True if left hand else False]].
    width=height since the network require squared input.
    x, y is the coordinate of top left 
    '''
    return detect_result

# get max index of 2d array
def npmax(array):
    arrayindex = array.argmax(1)
    arrayvalue = array.max(1)
    i = arrayvalue.argmax()
    j = arrayindex[i]
    return i, j