File size: 10,994 Bytes
2c924d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import cv2
import numpy as np
import math
import time
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
import matplotlib
import torch
from torchvision import transforms

from . import util
from .model import bodypose_model

class Body(object):
    def __init__(self, model_path):
        self.model = bodypose_model()
        if torch.cuda.is_available():
            self.model = self.model.cuda()
            print('cuda')
        model_dict = util.transfer(self.model, torch.load(model_path))
        self.model.load_state_dict(model_dict)
        self.model.eval()

    def __call__(self, oriImg):
        # scale_search = [0.5, 1.0, 1.5, 2.0]
        scale_search = [0.5]
        boxsize = 368
        stride = 8
        padValue = 128
        thre1 = 0.1
        thre2 = 0.05
        multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
        heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
        paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))

        for m in range(len(multiplier)):
            scale = multiplier[m]
            imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
            imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
            im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
            im = np.ascontiguousarray(im)

            data = torch.from_numpy(im).float()
            if torch.cuda.is_available():
                data = data.cuda()
            # data = data.permute([2, 0, 1]).unsqueeze(0).float()
            with torch.no_grad():
                Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
            Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
            Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()

            # extract outputs, resize, and remove padding
            # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0))  # output 1 is heatmaps
            heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0))  # output 1 is heatmaps
            heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
            heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
            heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)

            # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0))  # output 0 is PAFs
            paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0))  # output 0 is PAFs
            paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
            paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
            paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)

            heatmap_avg += heatmap_avg + heatmap / len(multiplier)
            paf_avg += + paf / len(multiplier)

        all_peaks = []
        peak_counter = 0

        for part in range(18):
            map_ori = heatmap_avg[:, :, part]
            one_heatmap = gaussian_filter(map_ori, sigma=3)

            map_left = np.zeros(one_heatmap.shape)
            map_left[1:, :] = one_heatmap[:-1, :]
            map_right = np.zeros(one_heatmap.shape)
            map_right[:-1, :] = one_heatmap[1:, :]
            map_up = np.zeros(one_heatmap.shape)
            map_up[:, 1:] = one_heatmap[:, :-1]
            map_down = np.zeros(one_heatmap.shape)
            map_down[:, :-1] = one_heatmap[:, 1:]

            peaks_binary = np.logical_and.reduce(
                (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
            peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]))  # note reverse
            peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
            peak_id = range(peak_counter, peak_counter + len(peaks))
            peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]

            all_peaks.append(peaks_with_score_and_id)
            peak_counter += len(peaks)

        # find connection in the specified sequence, center 29 is in the position 15
        limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
                   [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
                   [1, 16], [16, 18], [3, 17], [6, 18]]
        # the middle joints heatmap correpondence
        mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
                  [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
                  [55, 56], [37, 38], [45, 46]]

        connection_all = []
        special_k = []
        mid_num = 10

        for k in range(len(mapIdx)):
            score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
            candA = all_peaks[limbSeq[k][0] - 1]
            candB = all_peaks[limbSeq[k][1] - 1]
            nA = len(candA)
            nB = len(candB)
            indexA, indexB = limbSeq[k]
            if (nA != 0 and nB != 0):
                connection_candidate = []
                for i in range(nA):
                    for j in range(nB):
                        vec = np.subtract(candB[j][:2], candA[i][:2])
                        norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
                        norm = max(0.001, norm)
                        vec = np.divide(vec, norm)

                        startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
                                            np.linspace(candA[i][1], candB[j][1], num=mid_num)))

                        vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
                                          for I in range(len(startend))])
                        vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
                                          for I in range(len(startend))])

                        score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                        score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
                            0.5 * oriImg.shape[0] / norm - 1, 0)
                        criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
                        criterion2 = score_with_dist_prior > 0
                        if criterion1 and criterion2:
                            connection_candidate.append(
                                [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])

                connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
                connection = np.zeros((0, 5))
                for c in range(len(connection_candidate)):
                    i, j, s = connection_candidate[c][0:3]
                    if (i not in connection[:, 3] and j not in connection[:, 4]):
                        connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
                        if (len(connection) >= min(nA, nB)):
                            break

                connection_all.append(connection)
            else:
                special_k.append(k)
                connection_all.append([])

        # last number in each row is the total parts number of that person
        # the second last number in each row is the score of the overall configuration
        subset = -1 * np.ones((0, 20))
        candidate = np.array([item for sublist in all_peaks for item in sublist])

        for k in range(len(mapIdx)):
            if k not in special_k:
                partAs = connection_all[k][:, 0]
                partBs = connection_all[k][:, 1]
                indexA, indexB = np.array(limbSeq[k]) - 1

                for i in range(len(connection_all[k])):  # = 1:size(temp,1)
                    found = 0
                    subset_idx = [-1, -1]
                    for j in range(len(subset)):  # 1:size(subset,1):
                        if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
                            subset_idx[found] = j
                            found += 1

                    if found == 1:
                        j = subset_idx[0]
                        if subset[j][indexB] != partBs[i]:
                            subset[j][indexB] = partBs[i]
                            subset[j][-1] += 1
                            subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
                    elif found == 2:  # if found 2 and disjoint, merge them
                        j1, j2 = subset_idx
                        membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
                        if len(np.nonzero(membership == 2)[0]) == 0:  # merge
                            subset[j1][:-2] += (subset[j2][:-2] + 1)
                            subset[j1][-2:] += subset[j2][-2:]
                            subset[j1][-2] += connection_all[k][i][2]
                            subset = np.delete(subset, j2, 0)
                        else:  # as like found == 1
                            subset[j1][indexB] = partBs[i]
                            subset[j1][-1] += 1
                            subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]

                    # if find no partA in the subset, create a new subset
                    elif not found and k < 17:
                        row = -1 * np.ones(20)
                        row[indexA] = partAs[i]
                        row[indexB] = partBs[i]
                        row[-1] = 2
                        row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
                        subset = np.vstack([subset, row])
        # delete some rows of subset which has few parts occur
        deleteIdx = []
        for i in range(len(subset)):
            if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
                deleteIdx.append(i)
        subset = np.delete(subset, deleteIdx, axis=0)

        # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
        # candidate: x, y, score, id
        return candidate, subset

if __name__ == "__main__":
    body_estimation = Body('../model/body_pose_model.pth')

    test_image = '../images/ski.jpg'
    oriImg = cv2.imread(test_image)  # B,G,R order
    candidate, subset = body_estimation(oriImg)
    canvas = util.draw_bodypose(oriImg, candidate, subset)
    plt.imshow(canvas[:, :, [2, 1, 0]])
    plt.show()