Spaces:
Build error
Build error
File size: 5,403 Bytes
2c924d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..cnn import ConvModule
class BaseMergeCell(nn.Module):
"""The basic class for cells used in NAS-FPN and NAS-FCOS.
BaseMergeCell takes 2 inputs. After applying convolution
on them, they are resized to the target size. Then,
they go through binary_op, which depends on the type of cell.
If with_out_conv is True, the result of output will go through
another convolution layer.
Args:
in_channels (int): number of input channels in out_conv layer.
out_channels (int): number of output channels in out_conv layer.
with_out_conv (bool): Whether to use out_conv layer
out_conv_cfg (dict): Config dict for convolution layer, which should
contain "groups", "kernel_size", "padding", "bias" to build
out_conv layer.
out_norm_cfg (dict): Config dict for normalization layer in out_conv.
out_conv_order (tuple): The order of conv/norm/activation layers in
out_conv.
with_input1_conv (bool): Whether to use convolution on input1.
with_input2_conv (bool): Whether to use convolution on input2.
input_conv_cfg (dict): Config dict for building input1_conv layer and
input2_conv layer, which is expected to contain the type of
convolution.
Default: None, which means using conv2d.
input_norm_cfg (dict): Config dict for normalization layer in
input1_conv and input2_conv layer. Default: None.
upsample_mode (str): Interpolation method used to resize the output
of input1_conv and input2_conv to target size. Currently, we
support ['nearest', 'bilinear']. Default: 'nearest'.
"""
def __init__(self,
fused_channels=256,
out_channels=256,
with_out_conv=True,
out_conv_cfg=dict(
groups=1, kernel_size=3, padding=1, bias=True),
out_norm_cfg=None,
out_conv_order=('act', 'conv', 'norm'),
with_input1_conv=False,
with_input2_conv=False,
input_conv_cfg=None,
input_norm_cfg=None,
upsample_mode='nearest'):
super(BaseMergeCell, self).__init__()
assert upsample_mode in ['nearest', 'bilinear']
self.with_out_conv = with_out_conv
self.with_input1_conv = with_input1_conv
self.with_input2_conv = with_input2_conv
self.upsample_mode = upsample_mode
if self.with_out_conv:
self.out_conv = ConvModule(
fused_channels,
out_channels,
**out_conv_cfg,
norm_cfg=out_norm_cfg,
order=out_conv_order)
self.input1_conv = self._build_input_conv(
out_channels, input_conv_cfg,
input_norm_cfg) if with_input1_conv else nn.Sequential()
self.input2_conv = self._build_input_conv(
out_channels, input_conv_cfg,
input_norm_cfg) if with_input2_conv else nn.Sequential()
def _build_input_conv(self, channel, conv_cfg, norm_cfg):
return ConvModule(
channel,
channel,
3,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
bias=True)
@abstractmethod
def _binary_op(self, x1, x2):
pass
def _resize(self, x, size):
if x.shape[-2:] == size:
return x
elif x.shape[-2:] < size:
return F.interpolate(x, size=size, mode=self.upsample_mode)
else:
assert x.shape[-2] % size[-2] == 0 and x.shape[-1] % size[-1] == 0
kernel_size = x.shape[-1] // size[-1]
x = F.max_pool2d(x, kernel_size=kernel_size, stride=kernel_size)
return x
def forward(self, x1, x2, out_size=None):
assert x1.shape[:2] == x2.shape[:2]
assert out_size is None or len(out_size) == 2
if out_size is None: # resize to larger one
out_size = max(x1.size()[2:], x2.size()[2:])
x1 = self.input1_conv(x1)
x2 = self.input2_conv(x2)
x1 = self._resize(x1, out_size)
x2 = self._resize(x2, out_size)
x = self._binary_op(x1, x2)
if self.with_out_conv:
x = self.out_conv(x)
return x
class SumCell(BaseMergeCell):
def __init__(self, in_channels, out_channels, **kwargs):
super(SumCell, self).__init__(in_channels, out_channels, **kwargs)
def _binary_op(self, x1, x2):
return x1 + x2
class ConcatCell(BaseMergeCell):
def __init__(self, in_channels, out_channels, **kwargs):
super(ConcatCell, self).__init__(in_channels * 2, out_channels,
**kwargs)
def _binary_op(self, x1, x2):
ret = torch.cat([x1, x2], dim=1)
return ret
class GlobalPoolingCell(BaseMergeCell):
def __init__(self, in_channels=None, out_channels=None, **kwargs):
super().__init__(in_channels, out_channels, **kwargs)
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
def _binary_op(self, x1, x2):
x2_att = self.global_pool(x2).sigmoid()
return x2 + x2_att * x1
|