File size: 6,434 Bytes
2c924d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from torch.autograd import Function

from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward'])


class RoIAlignRotatedFunction(Function):

    @staticmethod
    def symbolic(g, features, rois, out_size, spatial_scale, sample_num,
                 aligned, clockwise):
        if isinstance(out_size, int):
            out_h = out_size
            out_w = out_size
        elif isinstance(out_size, tuple):
            assert len(out_size) == 2
            assert isinstance(out_size[0], int)
            assert isinstance(out_size[1], int)
            out_h, out_w = out_size
        else:
            raise TypeError(
                '"out_size" must be an integer or tuple of integers')
        return g.op(
            'mmcv::MMCVRoIAlignRotated',
            features,
            rois,
            output_height_i=out_h,
            output_width_i=out_h,
            spatial_scale_f=spatial_scale,
            sampling_ratio_i=sample_num,
            aligned_i=aligned,
            clockwise_i=clockwise)

    @staticmethod
    def forward(ctx,
                features,
                rois,
                out_size,
                spatial_scale,
                sample_num=0,
                aligned=True,
                clockwise=False):
        if isinstance(out_size, int):
            out_h = out_size
            out_w = out_size
        elif isinstance(out_size, tuple):
            assert len(out_size) == 2
            assert isinstance(out_size[0], int)
            assert isinstance(out_size[1], int)
            out_h, out_w = out_size
        else:
            raise TypeError(
                '"out_size" must be an integer or tuple of integers')
        ctx.spatial_scale = spatial_scale
        ctx.sample_num = sample_num
        ctx.aligned = aligned
        ctx.clockwise = clockwise
        ctx.save_for_backward(rois)
        ctx.feature_size = features.size()

        batch_size, num_channels, data_height, data_width = features.size()
        num_rois = rois.size(0)

        output = features.new_zeros(num_rois, num_channels, out_h, out_w)
        ext_module.roi_align_rotated_forward(
            features,
            rois,
            output,
            pooled_height=out_h,
            pooled_width=out_w,
            spatial_scale=spatial_scale,
            sample_num=sample_num,
            aligned=aligned,
            clockwise=clockwise)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        feature_size = ctx.feature_size
        spatial_scale = ctx.spatial_scale
        aligned = ctx.aligned
        clockwise = ctx.clockwise
        sample_num = ctx.sample_num
        rois = ctx.saved_tensors[0]
        assert feature_size is not None
        batch_size, num_channels, data_height, data_width = feature_size

        out_w = grad_output.size(3)
        out_h = grad_output.size(2)

        grad_input = grad_rois = None

        if ctx.needs_input_grad[0]:
            grad_input = rois.new_zeros(batch_size, num_channels, data_height,
                                        data_width)
            ext_module.roi_align_rotated_backward(
                grad_output.contiguous(),
                rois,
                grad_input,
                pooled_height=out_h,
                pooled_width=out_w,
                spatial_scale=spatial_scale,
                sample_num=sample_num,
                aligned=aligned,
                clockwise=clockwise)
        return grad_input, grad_rois, None, None, None, None, None


roi_align_rotated = RoIAlignRotatedFunction.apply


class RoIAlignRotated(nn.Module):
    """RoI align pooling layer for rotated proposals.

    It accepts a feature map of shape (N, C, H, W) and rois with shape
    (n, 6) with each roi decoded as (batch_index, center_x, center_y,
    w, h, angle). The angle is in radian.

    Args:
        out_size (tuple): h, w
        spatial_scale (float): scale the input boxes by this number
        sample_num (int): number of inputs samples to take for each
            output sample. 0 to take samples densely for current models.
        aligned (bool): if False, use the legacy implementation in
            MMDetection. If True, align the results more perfectly.
            Default: True.
        clockwise (bool): If True, the angle in each proposal follows a
            clockwise fashion in image space, otherwise, the angle is
            counterclockwise. Default: False.

    Note:
        The implementation of RoIAlign when aligned=True is modified from
        https://github.com/facebookresearch/detectron2/

        The meaning of aligned=True:

        Given a continuous coordinate c, its two neighboring pixel
        indices (in our pixel model) are computed by floor(c - 0.5) and
        ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
        indices [0] and [1] (which are sampled from the underlying signal
        at continuous coordinates 0.5 and 1.5). But the original roi_align
        (aligned=False) does not subtract the 0.5 when computing
        neighboring pixel indices and therefore it uses pixels with a
        slightly incorrect alignment (relative to our pixel model) when
        performing bilinear interpolation.

        With `aligned=True`,
        we first appropriately scale the ROI and then shift it by -0.5
        prior to calling roi_align. This produces the correct neighbors;

        The difference does not make a difference to the model's
        performance if ROIAlign is used together with conv layers.
    """

    def __init__(self,
                 out_size,
                 spatial_scale,
                 sample_num=0,
                 aligned=True,
                 clockwise=False):
        super(RoIAlignRotated, self).__init__()

        self.out_size = out_size
        self.spatial_scale = float(spatial_scale)
        self.sample_num = int(sample_num)
        self.aligned = aligned
        self.clockwise = clockwise

    def forward(self, features, rois):
        return RoIAlignRotatedFunction.apply(features, rois, self.out_size,
                                             self.spatial_scale,
                                             self.sample_num, self.aligned,
                                             self.clockwise)