Spaces:
Build error
Build error
File size: 7,025 Bytes
2c924d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
from annotator.uniformer.mmcv.cnn import ConvModule
from torch import nn
from torch.utils import checkpoint as cp
from .se_layer import SELayer
class InvertedResidual(nn.Module):
"""InvertedResidual block for MobileNetV2.
Args:
in_channels (int): The input channels of the InvertedResidual block.
out_channels (int): The output channels of the InvertedResidual block.
stride (int): Stride of the middle (first) 3x3 convolution.
expand_ratio (int): Adjusts number of channels of the hidden layer
in InvertedResidual by this amount.
dilation (int): Dilation rate of depthwise conv. Default: 1
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
Returns:
Tensor: The output tensor.
"""
def __init__(self,
in_channels,
out_channels,
stride,
expand_ratio,
dilation=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
with_cp=False):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2], f'stride must in [1, 2]. ' \
f'But received {stride}.'
self.with_cp = with_cp
self.use_res_connect = self.stride == 1 and in_channels == out_channels
hidden_dim = int(round(in_channels * expand_ratio))
layers = []
if expand_ratio != 1:
layers.append(
ConvModule(
in_channels=in_channels,
out_channels=hidden_dim,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
layers.extend([
ConvModule(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
groups=hidden_dim,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
ConvModule(
in_channels=hidden_dim,
out_channels=out_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
def _inner_forward(x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class InvertedResidualV3(nn.Module):
"""Inverted Residual Block for MobileNetV3.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
mid_channels (int): The input channels of the depthwise convolution.
kernel_size (int): The kernel size of the depthwise convolution.
Default: 3.
stride (int): The stride of the depthwise convolution. Default: 1.
se_cfg (dict): Config dict for se layer. Default: None, which means no
se layer.
with_expand_conv (bool): Use expand conv or not. If set False,
mid_channels must be the same with in_channels. Default: True.
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
Returns:
Tensor: The output tensor.
"""
def __init__(self,
in_channels,
out_channels,
mid_channels,
kernel_size=3,
stride=1,
se_cfg=None,
with_expand_conv=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False):
super(InvertedResidualV3, self).__init__()
self.with_res_shortcut = (stride == 1 and in_channels == out_channels)
assert stride in [1, 2]
self.with_cp = with_cp
self.with_se = se_cfg is not None
self.with_expand_conv = with_expand_conv
if self.with_se:
assert isinstance(se_cfg, dict)
if not self.with_expand_conv:
assert mid_channels == in_channels
if self.with_expand_conv:
self.expand_conv = ConvModule(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.depthwise_conv = ConvModule(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size // 2,
groups=mid_channels,
conv_cfg=dict(
type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
if self.with_se:
self.se = SELayer(**se_cfg)
self.linear_conv = ConvModule(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, x):
def _inner_forward(x):
out = x
if self.with_expand_conv:
out = self.expand_conv(out)
out = self.depthwise_conv(out)
if self.with_se:
out = self.se(out)
out = self.linear_conv(out)
if self.with_res_shortcut:
return x + out
else:
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
|