Spaces:
Build error
Build error
File size: 15,625 Bytes
2c924d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# CUSTOM VERSION OF https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition_flax.py
from typing import Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from diffusers.configuration_utils import ConfigMixin, flax_register_to_config
from diffusers.utils import BaseOutput
from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from diffusers.models.modeling_flax_utils import FlaxModelMixin
from diffusers.models.unet_2d_blocks_flax import (
FlaxCrossAttnDownBlock2D,
FlaxCrossAttnUpBlock2D,
FlaxDownBlock2D,
FlaxUNetMidBlock2DCrossAttn,
FlaxUpBlock2D,
)
@flax.struct.dataclass
class FlaxUNet2DConditionOutput(BaseOutput):
"""
Args:
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: jnp.ndarray
@flax_register_to_config
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
r"""
FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
timestep and returns sample shaped output.
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the models (such as downloading or saving, etc.)
Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
sample_size (`int`, *optional*):
The size of the input sample.
in_channels (`int`, *optional*, defaults to 4):
The number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4):
The number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D",
"FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D"
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D",
"FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D"
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
The dimension of the attention heads.
cross_attention_dim (`int`, *optional*, defaults to 768):
The dimension of the cross attention features.
dropout (`float`, *optional*, defaults to 0):
Dropout probability for down, up and bottleneck blocks.
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
"""
sample_size: int = 32
in_channels: int = 4
out_channels: int = 4
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
up_block_types: Tuple[str] = (
"UpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
)
only_cross_attention: Union[bool, Tuple[bool]] = False
block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
layers_per_block: int = 2
attention_head_dim: Union[int, Tuple[int]] = 8
cross_attention_dim: int = 1280
dropout: float = 0.0
use_linear_projection: bool = False
dtype: jnp.dtype = jnp.float32
flip_sin_to_cos: bool = True
freq_shift: int = 0
use_memory_efficient_attention: bool = False
def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict:
# init input tensors
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
timesteps = jnp.ones((1,), dtype=jnp.int32)
encoder_hidden_states = jnp.zeros(
(1, 1, self.cross_attention_dim), dtype=jnp.float32
)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"]
def setup(self):
block_out_channels = self.block_out_channels
time_embed_dim = block_out_channels[0] * 4
# input
self.conv_in = nn.Conv(
block_out_channels[0],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# time
self.time_proj = FlaxTimesteps(
block_out_channels[0],
flip_sin_to_cos=self.flip_sin_to_cos,
freq_shift=self.config.freq_shift,
)
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
only_cross_attention = self.only_cross_attention
if isinstance(only_cross_attention, bool):
only_cross_attention = (only_cross_attention,) * len(self.down_block_types)
attention_head_dim = self.attention_head_dim
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(self.down_block_types)
# down
down_blocks = []
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
if down_block_type == "CrossAttnDownBlock2D":
down_block = FlaxCrossAttnDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
attn_num_head_channels=attention_head_dim[i],
add_downsample=not is_final_block,
use_linear_projection=self.use_linear_projection,
only_cross_attention=only_cross_attention[i],
use_memory_efficient_attention=self.use_memory_efficient_attention,
dtype=self.dtype,
)
else:
down_block = FlaxDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
add_downsample=not is_final_block,
dtype=self.dtype,
)
down_blocks.append(down_block)
self.down_blocks = down_blocks
# mid
self.mid_block = FlaxUNetMidBlock2DCrossAttn(
in_channels=block_out_channels[-1],
dropout=self.dropout,
attn_num_head_channels=attention_head_dim[-1],
use_linear_projection=self.use_linear_projection,
use_memory_efficient_attention=self.use_memory_efficient_attention,
dtype=self.dtype,
)
# up
up_blocks = []
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[
min(i + 1, len(block_out_channels) - 1)
]
is_final_block = i == len(block_out_channels) - 1
if up_block_type == "CrossAttnUpBlock2D":
up_block = FlaxCrossAttnUpBlock2D(
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
num_layers=self.layers_per_block + 1,
attn_num_head_channels=reversed_attention_head_dim[i],
add_upsample=not is_final_block,
dropout=self.dropout,
use_linear_projection=self.use_linear_projection,
only_cross_attention=only_cross_attention[i],
use_memory_efficient_attention=self.use_memory_efficient_attention,
dtype=self.dtype,
)
else:
up_block = FlaxUpBlock2D(
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
num_layers=self.layers_per_block + 1,
add_upsample=not is_final_block,
dropout=self.dropout,
dtype=self.dtype,
)
up_blocks.append(up_block)
prev_output_channel = output_channel
self.up_blocks = up_blocks
# out
self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5)
self.conv_out = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(
self,
sample,
timesteps,
encoder_hidden_states,
down_block_additional_residuals=None,
mid_block_additional_residual=None,
return_dict: bool = True,
train: bool = False,
) -> Union[FlaxUNet2DConditionOutput, Tuple]:
r"""
Args:
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
timestep (`jnp.ndarray` or `float` or `int`): timesteps
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
plain tuple.
train (`bool`, *optional*, defaults to `False`):
Use deterministic functions and disable dropout when not training.
Returns:
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`.
When returning a tuple, the first element is the sample tensor.
"""
# 1. time
if not isinstance(timesteps, jnp.ndarray):
timesteps = jnp.array([timesteps], dtype=jnp.int32)
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
timesteps = timesteps.astype(dtype=jnp.float32)
timesteps = jnp.expand_dims(timesteps, 0)
t_emb = self.time_proj(timesteps)
t_emb = self.time_embedding(t_emb)
# 2. pre-process
sample = jnp.transpose(sample, (0, 2, 3, 1))
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for down_block in self.down_blocks:
if isinstance(down_block, FlaxCrossAttnDownBlock2D):
sample, res_samples = down_block(
sample, t_emb, encoder_hidden_states, deterministic=not train
)
else:
sample, res_samples = down_block(sample, t_emb, deterministic=not train)
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
sample = self.mid_block(
sample, t_emb, encoder_hidden_states, deterministic=not train
)
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
down_block_res_samples = down_block_res_samples[
: -(self.layers_per_block + 1)
]
if isinstance(up_block, FlaxCrossAttnUpBlock2D):
sample = up_block(
sample,
temb=t_emb,
encoder_hidden_states=encoder_hidden_states,
res_hidden_states_tuple=res_samples,
deterministic=not train,
)
else:
sample = up_block(
sample,
temb=t_emb,
res_hidden_states_tuple=res_samples,
deterministic=not train,
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = nn.silu(sample)
sample = self.conv_out(sample)
sample = jnp.transpose(sample, (0, 3, 1, 2))
if not return_dict:
return (sample,)
return FlaxUNet2DConditionOutput(sample=sample)
|