File size: 33,723 Bytes
2c924d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import warnings
from functools import partial
from typing import Dict, List, Optional, Union
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax.jax_utils import unreplicate
from flax.training.common_utils import shard
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel
from einops import rearrange, repeat
from diffusers.models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel
from diffusers.schedulers import (
    FlaxDDIMScheduler,
    FlaxDPMSolverMultistepScheduler,
    FlaxLMSDiscreteScheduler,
    FlaxPNDMScheduler,
)
from diffusers.utils import PIL_INTERPOLATION, logging, replace_example_docstring
from diffusers.pipelines.pipeline_flax_utils import FlaxDiffusionPipeline
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
"""
Text2Video-Zero:
 - Inputs: Prompt, Pose Control via mp4/gif, First Frame (?)
 - JAX implementation
 - 3DUnet to replace 2DUnetConditional

"""

DEBUG = False # Set to True to use python for loop instead of jax.fori_loop for easier debugging

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import jax
        >>> import numpy as np
        >>> import jax.numpy as jnp
        >>> from flax.jax_utils import replicate
        >>> from flax.training.common_utils import shard
        >>> from diffusers.utils import load_image
        >>> from PIL import Image
        >>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
        >>> def image_grid(imgs, rows, cols):
        ...     w, h = imgs[0].size
        ...     grid = Image.new("RGB", size=(cols * w, rows * h))
        ...     for i, img in enumerate(imgs):
        ...         grid.paste(img, box=(i % cols * w, i // cols * h))
        ...     return grid
        >>> def create_key(seed=0):
        ...     return jax.random.PRNGKey(seed)
        >>> rng = create_key(0)
        >>> # get canny image
        >>> canny_image = load_image(
        ...     "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg"
        ... )
        >>> prompts = "best quality, extremely detailed"
        >>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality"
        >>> # load control net and stable diffusion v1-5
        >>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
        ...     "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
        ... )
        >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
        ... )
        >>> params["controlnet"] = controlnet_params
        >>> num_samples = jax.device_count()
        >>> rng = jax.random.split(rng, jax.device_count())
        >>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
        >>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
        >>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
        >>> p_params = replicate(params)
        >>> prompt_ids = shard(prompt_ids)
        >>> negative_prompt_ids = shard(negative_prompt_ids)
        >>> processed_image = shard(processed_image)
        >>> output = pipe(
        ...     prompt_ids=prompt_ids,
        ...     image=processed_image,
        ...     params=p_params,
        ...     prng_seed=rng,
        ...     num_inference_steps=50,
        ...     neg_prompt_ids=negative_prompt_ids,
        ...     jit=True,
        ... ).images
        >>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
        >>> output_images = image_grid(output_images, num_samples // 4, 4)
        >>> output_images.save("generated_image.png")
        ```
"""
class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
    def __init__(
        self,
        vae: FlaxAutoencoderKL,
        text_encoder: FlaxCLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: FlaxUNet2DConditionModel,
        controlnet: FlaxControlNetModel,
        scheduler: Union[
            FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
        ],
        safety_checker: FlaxStableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        dtype: jnp.dtype = jnp.float32,
    ):
        super().__init__()
        self.dtype = dtype

        if safety_checker is None:
            logger.warn(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    def DDPM_forward(self, params, prng, x0, t0, tMax, shape, text_embeddings):
        if x0 is None:
            return jax.random.normal(prng, shape, dtype=text_embeddings.dtype)
        else:
            eps = jax.random.normal(prng, x0.shape, dtype=text_embeddings.dtype)
            alpha_vec = jnp.prod(params["scheduler"].common.alphas[t0:tMax])
            xt = jnp.sqrt(alpha_vec) * x0 + \
                jnp.sqrt(1-alpha_vec) * eps
            return xt
        
    def DDIM_backward(self, params, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, text_embeddings, latents_local,
                        guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
        scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
        f = latents_local.shape[2]
        latents_local = rearrange(latents_local, "b c f w h -> (b f) c w h")
        latents = latents_local.copy()
        x_t0_1 = None
        x_t1_1 = None
        max_timestep = len(timesteps)-1
        timesteps = jnp.array(timesteps)
        def while_body(args):
            step, latents, x_t0_1, x_t1_1, scheduler_state = args
            t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
            latent_model_input = jnp.concatenate(
                [latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(
                scheduler_state, latent_model_input, timestep=t
            )
            f = latents.shape[0]
            te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
            timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
            if controlnet_image is not None:
                down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
                    {"params": params["controlnet"]},
                    jnp.array(latent_model_input),
                    jnp.array(timestep, dtype=jnp.int32),
                    encoder_hidden_states=te,
                    controlnet_cond=controlnet_image,
                    conditioning_scale=controlnet_conditioning_scale,
                    return_dict=False,
                )
                # predict the noise residual
                noise_pred = self.unet.apply(
                    {"params": params["unet"]},
                    jnp.array(latent_model_input),
                    jnp.array(timestep, dtype=jnp.int32),
                    encoder_hidden_states=te,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                ).sample
            else:
                noise_pred = self.unet.apply(
                    {"params": params["unet"]},
                    jnp.array(latent_model_input),
                    jnp.array(timestep, dtype=jnp.int32),
                    encoder_hidden_states=te,
                    ).sample
            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
                noise_pred = noise_pred_uncond + guidance_scale * \
                    (noise_pred_text - noise_pred_uncond)
            # compute the previous noisy sample x_t -> x_t-1
            latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
            x_t0_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t0), latents, x_t0_1)
            x_t1_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t1), latents, x_t1_1)
            return (step + 1, latents, x_t0_1, x_t1_1, scheduler_state)
        latents_shape = latents.shape
        x_t0_1, x_t1_1 = jnp.zeros(latents_shape), jnp.zeros(latents_shape)

        def cond_fun(arg):
            step, latents, x_t0_1, x_t1_1, scheduler_state = arg
            return (step < skip_t) & (step < num_inference_steps)
        
        if DEBUG:
            step = 0
            while cond_fun((step, latents, x_t0_1, x_t1_1)):
                step, latents, x_t0_1, x_t1_1, scheduler_state = while_body((step, latents, x_t0_1, x_t1_1, scheduler_state))
                step = step + 1
        else:
            _, latents, x_t0_1, x_t1_1, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, x_t0_1, x_t1_1, scheduler_state))
        latents = rearrange(latents, "(b f) c w h -> b c f  w h", f=f)
        res = {"x0": latents.copy()}
        if x_t0_1 is not None:
            x_t0_1 = rearrange(x_t0_1, "(b f) c w h -> b c f  w h", f=f)
            res["x_t0_1"] = x_t0_1.copy()
        if x_t1_1 is not None:
            x_t1_1 = rearrange(x_t1_1, "(b f) c w h -> b c f  w h", f=f)
            res["x_t1_1"] = x_t1_1.copy()
        return res
    
    def warp_latents_independently(self, latents, reference_flow):
        _, _, H, W = reference_flow.shape
        b, _, f, h, w = latents.shape
        assert b == 1
        coords0 = coords_grid(f, H, W)
        coords_t0 = coords0 + reference_flow
        coords_t0 = coords_t0.at[:, 0].set(coords_t0[:, 0] * w / W)
        coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
        f, c, _, _ = coords_t0.shape
        coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
        coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
        latents_0 = rearrange(latents[0], 'c f h w -> f  c  h w')
        warped = grid_sample(latents_0, coords_t0, "mirror")
        warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
        return warped

    def warp_vid_independently(self, vid, reference_flow):
        _, _, H, W = reference_flow.shape
        f, _, h, w = vid.shape
        coords0 = coords_grid(f, H, W)
        coords_t0 = coords0 + reference_flow
        coords_t0 = coords_t0.at[:, 0].set(coords_t0[:, 0] * w / W)
        coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
        f, c, _, _ = coords_t0.shape
        coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
        coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
        # latents_0 = rearrange(vid, 'c f h w -> f  c  h w')
        warped = grid_sample(vid, coords_t0, "zeropad")
        # warped = rearrange(warped, 'f c h w -> b c f h w', f=f)
        return warped
    
    def create_motion_field(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
        reference_flow = jnp.zeros(
            (video_length-1, 2, 512, 512), dtype=latents.dtype)    
        for fr_idx, frame_id in enumerate(frame_ids):
            reference_flow = reference_flow.at[fr_idx, 0, :,
                           :].set(motion_field_strength_x*(frame_id))
            reference_flow = reference_flow.at[fr_idx, 1, :,
                           :].set(motion_field_strength_y*(frame_id))
        return reference_flow
    
    def create_motion_field_and_warp_latents(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
        motion_field = self.create_motion_field(motion_field_strength_x=motion_field_strength_x,
                                                motion_field_strength_y=motion_field_strength_y, latents=latents, video_length=video_length, frame_ids=frame_ids)
        for idx, latent in enumerate(latents):
            latents = latents.at[idx].set(self.warp_latents_independently(
                latent[None], motion_field)[0])
        return motion_field, latents
    
    def text_to_video_zero(self, params,
                           prng,
                           text_embeddings,
                           video_length: Optional[int],
                           do_classifier_free_guidance = True,
                           height: Optional[int] = None,
                           width: Optional[int] = None,
                           num_inference_steps: int = 50,
                           guidance_scale: float = 7.5,
                           num_videos_per_prompt: Optional[int] = 1,
                           xT = None,
                           motion_field_strength_x: float = 12,
                           motion_field_strength_y: float = 12,
                           t0: int = 44,
                           t1: int = 47,
                           controlnet_image=None,
                           controlnet_conditioning_scale=0,
                           ):
        frame_ids = list(range(video_length))
        # Prepare timesteps
        params["scheduler"] = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
        timesteps = params["scheduler"].timesteps
        # Prepare latent variables
        num_channels_latents = self.unet.in_channels
        batch_size = 1
        xT = prepare_latents(params, prng, batch_size * num_videos_per_prompt, num_channels_latents, 1, height, width, self.vae_scale_factor, xT)
        xT = xT[:, :, :1]
        timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
                            701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
                            421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
                            141, 121, 101,  81,  61,  41,  21,   1]
        timesteps_ddpm.reverse()
        t0 = timesteps_ddpm[t0]
        t1 = timesteps_ddpm[t1]
        x_t1_1 = None

        # Denoising loop
        shape = (batch_size, num_channels_latents, 1, height //
                self.vae.scaling_factor, width // self.vae.scaling_factor)

        #  perform ∆t backward steps by stable diffusion
        ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
                                text_embeddings=text_embeddings, latents_local=xT, guidance_scale=guidance_scale,
                                controlnet_image=jnp.stack([controlnet_image[0]] * 2), controlnet_conditioning_scale=controlnet_conditioning_scale)
        x0 = ddim_res["x0"]

        # apply warping functions
        if "x_t0_1" in ddim_res:
            x_t0_1 = ddim_res["x_t0_1"]
        if "x_t1_1" in ddim_res:
            x_t1_1 = ddim_res["x_t1_1"]
        x_t0_k = x_t0_1[:, :, :1, :, :].repeat(video_length-1, 2)
        reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
            motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_t0_k, video_length=video_length, frame_ids=frame_ids[1:])
        # assuming t0=t1=1000, if t0 = 1000

        # DDPM forward for more motion freedom
        ddpm_fwd = partial(self.DDPM_forward, params=params, prng=prng, x0=x_t0_k, t0=t0,
                           tMax=t1, shape=shape, text_embeddings=text_embeddings)
        x_t1_k = jax.lax.cond(t1 > t0,
                              ddpm_fwd,
                              lambda:x_t0_k
        )
        x_t1 = jnp.concatenate([x_t1_1, x_t1_k], axis=2).copy()

        # backward stepts by stable diffusion

        #warp the controlnet image following the same flow defined for latent
        controlnet_video = controlnet_image[:video_length]
        controlnet_video = controlnet_video.at[1:].set(self.warp_vid_independently(controlnet_video[1:], reference_flow))
        controlnet_image = jnp.concatenate([controlnet_video]*2)


        ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
                                            text_embeddings=text_embeddings, latents_local=x_t1, guidance_scale=guidance_scale,
                                            controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
        x0 = ddim_res["x0"]
        return x0

    def prepare_text_inputs(self, prompt: Union[str, List[str]]):
        if not isinstance(prompt, (str, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        text_input = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        return text_input.input_ids
    def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
        if not isinstance(image, (Image.Image, list)):
            raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}")
        if isinstance(image, Image.Image):
            image = [image]
        processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image])
        return processed_images
    def _get_has_nsfw_concepts(self, features, params):
        has_nsfw_concepts = self.safety_checker(features, params)
        return has_nsfw_concepts
    def _run_safety_checker(self, images, safety_model_params, jit=False):
        # safety_model_params should already be replicated when jit is True
        pil_images = [Image.fromarray(image) for image in images]
        features = self.feature_extractor(pil_images, return_tensors="np").pixel_values
        if jit:
            features = shard(features)
            has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
            has_nsfw_concepts = unshard(has_nsfw_concepts)
            safety_model_params = unreplicate(safety_model_params)
        else:
            has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)
        images_was_copied = False
        for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
            if has_nsfw_concept:
                if not images_was_copied:
                    images_was_copied = True
                    images = images.copy()
                images[idx] = np.zeros(images[idx].shape, dtype=np.uint8)  # black image
            if any(has_nsfw_concepts):
                warnings.warn(
                    "Potential NSFW content was detected in one or more images. A black image will be returned"
                    " instead. Try again with a different prompt and/or seed."
                )
        return images, has_nsfw_concepts
    def _generate(
        self,
        prompt_ids: jnp.array,
        image: jnp.array,
        params: Union[Dict, FrozenDict],
        prng_seed: jax.random.KeyArray,
        num_inference_steps: int,
        guidance_scale: float,
        latents: Optional[jnp.array] = None,
        neg_prompt_ids: Optional[jnp.array] = None,
        controlnet_conditioning_scale: float = 1.0,
        xT = None,
        motion_field_strength_x: float = 12,
        motion_field_strength_y: float = 12,
        t0: int = 44,
        t1: int = 47,
    ):
        height, width = image.shape[-2:]
        video_length = image.shape[0]
        if height % 64 != 0 or width % 64 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
        # get prompt text embeddings
        prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
        # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
        # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
        batch_size = prompt_ids.shape[0]
        max_length = prompt_ids.shape[-1]
        if neg_prompt_ids is None:
            uncond_input = self.tokenizer(
                [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
            ).input_ids
        else:
            uncond_input = neg_prompt_ids
        negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
        context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
        image = jnp.concatenate([image] * 2)
        seed_t2vz, prng_seed = jax.random.split(prng_seed)
        #get the latent following text to video zero
        latents = self.text_to_video_zero(params, seed_t2vz, text_embeddings=context, video_length=video_length,
                                          height=height, width = width, num_inference_steps=num_inference_steps,
                                          guidance_scale=guidance_scale, controlnet_image=image,
                                          xT=xT, t0=t0, t1=t1,
                                          motion_field_strength_x=motion_field_strength_x,
                                          motion_field_strength_y=motion_field_strength_y,
                                          controlnet_conditioning_scale=controlnet_conditioning_scale
                                          )
        # scale and decode the image latents with vae
        latents = 1 / self.vae.config.scaling_factor * latents
        latents = rearrange(latents, "b c f h w -> (b f) c h w")
        video = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample
        video = (video / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
        return video
    
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt_ids: jnp.array,
        image: jnp.array,
        params: Union[Dict, FrozenDict],
        prng_seed: jax.random.KeyArray,
        num_inference_steps: int = 50,
        guidance_scale: Union[float, jnp.array] = 7.5,
        latents: jnp.array = None,
        neg_prompt_ids: jnp.array = None,
        controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
        return_dict: bool = True,
        jit: bool = False,
        xT = None,
        motion_field_strength_x: float = 3,
        motion_field_strength_y: float = 4,
        t0: int = 44,
        t1: int = 47,
    ):
        r"""
        Function invoked when calling the pipeline for generation.
        Args:
            prompt_ids (`jnp.array`):
                The prompt or prompts to guide the image generation.
            image (`jnp.array`):
                Array representing the ControlNet input condition. ControlNet use this input condition to generate
                guidance to Unet.
            params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights
            prng_seed (`jax.random.KeyArray` or `jax.Array`): Array containing random number generator key
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            latents (`jnp.array`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            controlnet_conditioning_scale (`float` or `jnp.array`, *optional*, defaults to 1.0):
                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original unet.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
                a plain tuple.
            jit (`bool`, defaults to `False`):
                Whether to run `pmap` versions of the generation and safety scoring functions. NOTE: This argument
                exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release.
        Examples:
        Returns:
            [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple. When returning a tuple, the first element is a list with the generated images, and the second
            element is a list of `bool`s denoting whether the corresponding generated image likely represents
            "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
        """
        height, width = image.shape[-2:]
        if isinstance(guidance_scale, float):
            # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
            # shape information, as they may be sharded (when `jit` is `True`), or not.
            guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
            if len(prompt_ids.shape) > 2:
                # Assume sharded
                guidance_scale = guidance_scale[:, None]
        if isinstance(controlnet_conditioning_scale, float):
            # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
            # shape information, as they may be sharded (when `jit` is `True`), or not.
            controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
            if len(prompt_ids.shape) > 2:
                # Assume sharded
                controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
        if jit:
            images = _p_generate(
                self,
                prompt_ids,
                image,
                params,
                prng_seed,
                num_inference_steps,
                guidance_scale,
                latents,
                neg_prompt_ids,
                controlnet_conditioning_scale,
                xT,
                motion_field_strength_x,
                motion_field_strength_y,
                t0,
                t1,
            )
        else:
            images = self._generate(
                prompt_ids,
                image,
                params,
                prng_seed,
                num_inference_steps,
                guidance_scale,
                latents,
                neg_prompt_ids,
                controlnet_conditioning_scale,
                xT,
                motion_field_strength_x,
                motion_field_strength_y,
                t0,
                t1,
            )
        if self.safety_checker is not None:
            safety_params = params["safety_checker"]
            images_uint8_casted = (images * 255).round().astype("uint8")
            num_devices, batch_size = images.shape[:2]
            images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
            images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
            images = np.asarray(images)
            # block images
            if any(has_nsfw_concept):
                for i, is_nsfw in enumerate(has_nsfw_concept):
                    if is_nsfw:
                        images[i] = np.asarray(images_uint8_casted[i])
            images = images.reshape(num_devices, batch_size, height, width, 3)
        else:
            images = np.asarray(images)
            has_nsfw_concept = False
        if not return_dict:
            return (images, has_nsfw_concept)
        return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
# Static argnums are pipe, num_inference_steps. A change would trigger recompilation.
# Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`).
@partial(
    jax.pmap,
    in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0, 0, None, None, None, None),
    static_broadcasted_argnums=(0, 5, 11, 12, 13, 14),
)
def _p_generate(
    pipe,
    prompt_ids, 
    image,
    params,
    prng_seed,
    num_inference_steps,
    guidance_scale,
    latents,
    neg_prompt_ids,
    controlnet_conditioning_scale,
    xT,
    motion_field_strength_x,
    motion_field_strength_y,
    t0,
    t1,
):
    return pipe._generate(
        prompt_ids,
        image,
        params,
        prng_seed,
        num_inference_steps,
        guidance_scale,
        latents,
        neg_prompt_ids,
        controlnet_conditioning_scale,
        xT,
        motion_field_strength_x,
        motion_field_strength_y,
        t0,
        t1,
    )
@partial(jax.pmap, static_broadcasted_argnums=(0,))
def _p_get_has_nsfw_concepts(pipe, features, params):
    return pipe._get_has_nsfw_concepts(features, params)
def unshard(x: jnp.ndarray):
    # einops.rearrange(x, 'd b ... -> (d b) ...')
    num_devices, batch_size = x.shape[:2]
    rest = x.shape[2:]
    return x.reshape(num_devices * batch_size, *rest)
def preprocess(image, dtype):
    image = image.convert("RGB")
    w, h = image.size
    w, h = (x - x % 64 for x in (w, h))  # resize to integer multiple of 64
    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
    image = jnp.array(image).astype(dtype) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    return image

def prepare_latents(params, prng, batch_size, num_channels_latents, video_length, height, width, vae_scale_factor, latents=None):
    shape = (batch_size, num_channels_latents, video_length, height //
            vae_scale_factor, width // vae_scale_factor)
    # scale the initial noise by the standard deviation required by the scheduler
    if latents is None:
        latents = jax.random.normal(prng, shape)
    latents = latents * params["scheduler"].init_noise_sigma
    return latents

def coords_grid(batch, ht, wd):
    coords = jnp.meshgrid(jnp.arange(ht), jnp.arange(wd), indexing="ij")
    coords = jnp.stack(coords[::-1], axis=0)
    return coords[None].repeat(batch, 0)

def adapt_pos_mirror(x, y, W, H):
  #adapt the position, with mirror padding
  x_w_mirror = ((x + W - 1) % (2*(W - 1))) - W + 1
  x_adapted = jnp.where(x_w_mirror > 0, x_w_mirror, - (x_w_mirror))
  y_w_mirror = ((y + H - 1) % (2*(H - 1))) - H + 1
  y_adapted = jnp.where(y_w_mirror > 0, y_w_mirror, - (y_w_mirror))
  return y_adapted, x_adapted

def safe_get_zeropad(img, x,y,W,H):
  return jnp.where((x < W) & (x > 0) & (y < H) & (y > 0), img[y,x], 0.)

def safe_get_mirror(img, x,y,W,H):
  return img[adapt_pos_mirror(x,y,W,H)]

@partial(jax.vmap, in_axes=(0, 0, None))
@partial(jax.vmap, in_axes=(0, None, None))
@partial(jax.vmap, in_axes=(None,0, None))
@partial(jax.vmap, in_axes=(None, 0, None))
def grid_sample(latents, grid, method):
    # this is an alternative to torch.functional.nn.grid_sample in jax
    # this implementation is following the algorithm described @ https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
    # but with coordinates scaled to the size of the image
    if method == "mirror":
      return safe_get_mirror(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
    else: #default is zero padding
      return safe_get_zeropad(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])