Pie31415's picture
initial commit
2c924d3
raw
history blame
2.31 kB
import gradio as gr
from text_to_animation.model import ControlAnimationModel
from webui.app_pose import create_demo as create_demo_pose
from webui.app_text_to_video import create_demo as create_demo_text_to_video
from webui.app_control_animation import create_demo as create_demo_animation
import argparse
import os
import jax.numpy as jnp
huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
on_huggingspace = huggingspace_name if huggingspace_name is not None else False
model = ControlAnimationModel(device="cuda", dtype=jnp.float16)
parser = argparse.ArgumentParser()
parser.add_argument(
"--public_access",
action="store_true",
help="if enabled, the app can be access from a public url",
default=False,
)
args = parser.parse_args()
title = """
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">Control Animation</h1>
"""
description = """
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
Our code uses <a href="https://www.humphreyshi.com/home">Text2Video-Zero</a> and the <a href="https://github.com/huggingface/diffusers">Diffusers</a> library as inspiration.
</h2>
</div>
"""
notice = """
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://github.com/Pie31415/control-animation">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(title)
gr.Markdown(description)
if on_huggingspace:
gr.HTML(notice)
# NOTE: In our final demo we should consider removing zero-shot t2v and pose conditional
with gr.Tab("Control Animation"):
create_demo_animation(model)
# with gr.Tab("Zero-Shot Text2Video"):
# create_demo_text_to_video(model)
# with gr.Tab("Pose Conditional"):
# create_demo_pose(model)
if on_huggingspace:
demo.queue(max_size=20)
demo.launch(debug=True)
else:
_, _, link = demo.queue(api_open=False).launch(
file_directories=["temporal"], share=args.public_access, debug=True
)
print(link)