Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', ['pixel_group']) | |
def pixel_group(score, mask, embedding, kernel_label, kernel_contour, | |
kernel_region_num, distance_threshold): | |
"""Group pixels into text instances, which is widely used text detection | |
methods. | |
Arguments: | |
score (np.array or Tensor): The foreground score with size hxw. | |
mask (np.array or Tensor): The foreground mask with size hxw. | |
embedding (np.array or Tensor): The embedding with size hxwxc to | |
distinguish instances. | |
kernel_label (np.array or Tensor): The instance kernel index with | |
size hxw. | |
kernel_contour (np.array or Tensor): The kernel contour with size hxw. | |
kernel_region_num (int): The instance kernel region number. | |
distance_threshold (float): The embedding distance threshold between | |
kernel and pixel in one instance. | |
Returns: | |
pixel_assignment (List[List[float]]): The instance coordinate list. | |
Each element consists of averaged confidence, pixel number, and | |
coordinates (x_i, y_i for all pixels) in order. | |
""" | |
assert isinstance(score, (torch.Tensor, np.ndarray)) | |
assert isinstance(mask, (torch.Tensor, np.ndarray)) | |
assert isinstance(embedding, (torch.Tensor, np.ndarray)) | |
assert isinstance(kernel_label, (torch.Tensor, np.ndarray)) | |
assert isinstance(kernel_contour, (torch.Tensor, np.ndarray)) | |
assert isinstance(kernel_region_num, int) | |
assert isinstance(distance_threshold, float) | |
if isinstance(score, np.ndarray): | |
score = torch.from_numpy(score) | |
if isinstance(mask, np.ndarray): | |
mask = torch.from_numpy(mask) | |
if isinstance(embedding, np.ndarray): | |
embedding = torch.from_numpy(embedding) | |
if isinstance(kernel_label, np.ndarray): | |
kernel_label = torch.from_numpy(kernel_label) | |
if isinstance(kernel_contour, np.ndarray): | |
kernel_contour = torch.from_numpy(kernel_contour) | |
if torch.__version__ == 'parrots': | |
label = ext_module.pixel_group( | |
score, | |
mask, | |
embedding, | |
kernel_label, | |
kernel_contour, | |
kernel_region_num=kernel_region_num, | |
distance_threshold=distance_threshold) | |
label = label.tolist() | |
label = label[0] | |
list_index = kernel_region_num | |
pixel_assignment = [] | |
for x in range(kernel_region_num): | |
pixel_assignment.append( | |
np.array( | |
label[list_index:list_index + int(label[x])], | |
dtype=np.float)) | |
list_index = list_index + int(label[x]) | |
else: | |
pixel_assignment = ext_module.pixel_group(score, mask, embedding, | |
kernel_label, kernel_contour, | |
kernel_region_num, | |
distance_threshold) | |
return pixel_assignment | |