Pie31415's picture
initial commit
2c924d3
raw
history blame
5.2 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import nn
from torch.autograd import Function
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext',
['dynamic_point_to_voxel_forward', 'dynamic_point_to_voxel_backward'])
class _DynamicScatter(Function):
@staticmethod
def forward(ctx, feats, coors, reduce_type='max'):
"""convert kitti points(N, >=3) to voxels.
Args:
feats (torch.Tensor): [N, C]. Points features to be reduced
into voxels.
coors (torch.Tensor): [N, ndim]. Corresponding voxel coordinates
(specifically multi-dim voxel index) of each points.
reduce_type (str, optional): Reduce op. support 'max', 'sum' and
'mean'. Default: 'max'.
Returns:
voxel_feats (torch.Tensor): [M, C]. Reduced features, input
features that shares the same voxel coordinates are reduced to
one row.
voxel_coors (torch.Tensor): [M, ndim]. Voxel coordinates.
"""
results = ext_module.dynamic_point_to_voxel_forward(
feats, coors, reduce_type)
(voxel_feats, voxel_coors, point2voxel_map,
voxel_points_count) = results
ctx.reduce_type = reduce_type
ctx.save_for_backward(feats, voxel_feats, point2voxel_map,
voxel_points_count)
ctx.mark_non_differentiable(voxel_coors)
return voxel_feats, voxel_coors
@staticmethod
def backward(ctx, grad_voxel_feats, grad_voxel_coors=None):
(feats, voxel_feats, point2voxel_map,
voxel_points_count) = ctx.saved_tensors
grad_feats = torch.zeros_like(feats)
# TODO: whether to use index put or use cuda_backward
# To use index put, need point to voxel index
ext_module.dynamic_point_to_voxel_backward(
grad_feats, grad_voxel_feats.contiguous(), feats, voxel_feats,
point2voxel_map, voxel_points_count, ctx.reduce_type)
return grad_feats, None, None
dynamic_scatter = _DynamicScatter.apply
class DynamicScatter(nn.Module):
"""Scatters points into voxels, used in the voxel encoder with dynamic
voxelization.
Note:
The CPU and GPU implementation get the same output, but have numerical
difference after summation and division (e.g., 5e-7).
Args:
voxel_size (list): list [x, y, z] size of three dimension.
point_cloud_range (list): The coordinate range of points, [x_min,
y_min, z_min, x_max, y_max, z_max].
average_points (bool): whether to use avg pooling to scatter points
into voxel.
"""
def __init__(self, voxel_size, point_cloud_range, average_points: bool):
super().__init__()
self.voxel_size = voxel_size
self.point_cloud_range = point_cloud_range
self.average_points = average_points
def forward_single(self, points, coors):
"""Scatters points into voxels.
Args:
points (torch.Tensor): Points to be reduced into voxels.
coors (torch.Tensor): Corresponding voxel coordinates (specifically
multi-dim voxel index) of each points.
Returns:
voxel_feats (torch.Tensor): Reduced features, input features that
shares the same voxel coordinates are reduced to one row.
voxel_coors (torch.Tensor): Voxel coordinates.
"""
reduce = 'mean' if self.average_points else 'max'
return dynamic_scatter(points.contiguous(), coors.contiguous(), reduce)
def forward(self, points, coors):
"""Scatters points/features into voxels.
Args:
points (torch.Tensor): Points to be reduced into voxels.
coors (torch.Tensor): Corresponding voxel coordinates (specifically
multi-dim voxel index) of each points.
Returns:
voxel_feats (torch.Tensor): Reduced features, input features that
shares the same voxel coordinates are reduced to one row.
voxel_coors (torch.Tensor): Voxel coordinates.
"""
if coors.size(-1) == 3:
return self.forward_single(points, coors)
else:
batch_size = coors[-1, 0] + 1
voxels, voxel_coors = [], []
for i in range(batch_size):
inds = torch.where(coors[:, 0] == i)
voxel, voxel_coor = self.forward_single(
points[inds], coors[inds][:, 1:])
coor_pad = nn.functional.pad(
voxel_coor, (1, 0), mode='constant', value=i)
voxel_coors.append(coor_pad)
voxels.append(voxel)
features = torch.cat(voxels, dim=0)
feature_coors = torch.cat(voxel_coors, dim=0)
return features, feature_coors
def __repr__(self):
s = self.__class__.__name__ + '('
s += 'voxel_size=' + str(self.voxel_size)
s += ', point_cloud_range=' + str(self.point_cloud_range)
s += ', average_points=' + str(self.average_points)
s += ')'
return s