Spaces:
Build error
Build error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Tuple, Union | |
import flax | |
import flax.linen as nn | |
import jax | |
import jax.numpy as jnp | |
from flax.core.frozen_dict import FrozenDict | |
from diffusers.configuration_utils import ConfigMixin, flax_register_to_config | |
from diffusers.utils import BaseOutput | |
from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps | |
from diffusers.models.modeling_flax_utils import FlaxModelMixin | |
from diffusers.models.unet_2d_blocks_flax import ( | |
FlaxCrossAttnDownBlock2D, | |
FlaxCrossAttnUpBlock2D, | |
FlaxDownBlock2D, | |
FlaxUNetMidBlock2DCrossAttn, | |
FlaxUpBlock2D, | |
) | |
class FlaxControlNetOutput(BaseOutput): | |
down_block_res_samples: jnp.ndarray | |
mid_block_res_sample: jnp.ndarray | |
class FlaxControlNetConditioningEmbedding(nn.Module): | |
conditioning_embedding_channels: int | |
block_out_channels: Tuple[int] = (16, 32, 96, 256) | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
self.conv_in = nn.Conv( | |
self.block_out_channels[0], | |
kernel_size=(3, 3), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
blocks = [] | |
for i in range(len(self.block_out_channels) - 1): | |
channel_in = self.block_out_channels[i] | |
channel_out = self.block_out_channels[i + 1] | |
conv1 = nn.Conv( | |
channel_in, | |
kernel_size=(3, 3), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
blocks.append(conv1) | |
conv2 = nn.Conv( | |
channel_out, | |
kernel_size=(3, 3), | |
strides=(2, 2), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
blocks.append(conv2) | |
self.blocks = blocks | |
self.conv_out = nn.Conv( | |
self.conditioning_embedding_channels, | |
kernel_size=(3, 3), | |
padding=((1, 1), (1, 1)), | |
kernel_init=nn.initializers.zeros_init(), | |
bias_init=nn.initializers.zeros_init(), | |
dtype=self.dtype, | |
) | |
def __call__(self, conditioning): | |
embedding = self.conv_in(conditioning) | |
embedding = nn.silu(embedding) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = nn.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding | |
class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin): | |
r""" | |
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
model) to encode image-space conditions ... into feature maps ..." | |
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the models (such as downloading or saving, etc.) | |
Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to | |
general usage and behavior. | |
Finally, this model supports inherent JAX features such as: | |
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
Parameters: | |
sample_size (`int`, *optional*): | |
The size of the input sample. | |
in_channels (`int`, *optional*, defaults to 4): | |
The number of channels in the input sample. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D", | |
"FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D" | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): | |
The dimension of the attention heads. | |
cross_attention_dim (`int`, *optional*, defaults to 768): | |
The dimension of the cross attention features. | |
dropout (`float`, *optional*, defaults to 0): | |
Dropout probability for down, up and bottleneck blocks. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`): | |
The channel order of conditional image. Will convert it to `rgb` if it's `bgr` | |
conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`): | |
The tuple of output channel for each block in conditioning_embedding layer | |
""" | |
sample_size: int = 32 | |
in_channels: int = 4 | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
) | |
only_cross_attention: Union[bool, Tuple[bool]] = False | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280) | |
layers_per_block: int = 2 | |
attention_head_dim: Union[int, Tuple[int]] = 8 | |
cross_attention_dim: int = 1280 | |
dropout: float = 0.0 | |
use_linear_projection: bool = False | |
dtype: jnp.dtype = jnp.float32 | |
flip_sin_to_cos: bool = True | |
freq_shift: int = 0 | |
controlnet_conditioning_channel_order: str = "rgb" | |
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256) | |
def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict: | |
# init input tensors | |
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) | |
sample = jnp.zeros(sample_shape, dtype=jnp.float32) | |
timesteps = jnp.ones((1,), dtype=jnp.int32) | |
encoder_hidden_states = jnp.zeros( | |
(1, 1, self.cross_attention_dim), dtype=jnp.float32 | |
) | |
controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8) | |
controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32) | |
params_rng, dropout_rng = jax.random.split(rng) | |
rngs = {"params": params_rng, "dropout": dropout_rng} | |
return self.init( | |
rngs, sample, timesteps, encoder_hidden_states, controlnet_cond | |
)["params"] | |
def setup(self): | |
block_out_channels = self.block_out_channels | |
time_embed_dim = block_out_channels[0] * 4 | |
# input | |
self.conv_in = nn.Conv( | |
block_out_channels[0], | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
# time | |
self.time_proj = FlaxTimesteps( | |
block_out_channels[0], | |
flip_sin_to_cos=self.flip_sin_to_cos, | |
freq_shift=self.config.freq_shift, | |
) | |
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) | |
self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding( | |
conditioning_embedding_channels=block_out_channels[0], | |
block_out_channels=self.conditioning_embedding_out_channels, | |
) | |
only_cross_attention = self.only_cross_attention | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = (only_cross_attention,) * len(self.down_block_types) | |
attention_head_dim = self.attention_head_dim | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(self.down_block_types) | |
# down | |
down_blocks = [] | |
controlnet_down_blocks = [] | |
output_channel = block_out_channels[0] | |
controlnet_block = nn.Conv( | |
output_channel, | |
kernel_size=(1, 1), | |
padding="VALID", | |
kernel_init=nn.initializers.zeros_init(), | |
bias_init=nn.initializers.zeros_init(), | |
dtype=self.dtype, | |
) | |
controlnet_down_blocks.append(controlnet_block) | |
for i, down_block_type in enumerate(self.down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
if down_block_type == "CrossAttnDownBlock2D": | |
down_block = FlaxCrossAttnDownBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
dropout=self.dropout, | |
num_layers=self.layers_per_block, | |
attn_num_head_channels=attention_head_dim[i], | |
add_downsample=not is_final_block, | |
use_linear_projection=self.use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
dtype=self.dtype, | |
) | |
else: | |
down_block = FlaxDownBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
dropout=self.dropout, | |
num_layers=self.layers_per_block, | |
add_downsample=not is_final_block, | |
dtype=self.dtype, | |
) | |
down_blocks.append(down_block) | |
for _ in range(self.layers_per_block): | |
controlnet_block = nn.Conv( | |
output_channel, | |
kernel_size=(1, 1), | |
padding="VALID", | |
kernel_init=nn.initializers.zeros_init(), | |
bias_init=nn.initializers.zeros_init(), | |
dtype=self.dtype, | |
) | |
controlnet_down_blocks.append(controlnet_block) | |
if not is_final_block: | |
controlnet_block = nn.Conv( | |
output_channel, | |
kernel_size=(1, 1), | |
padding="VALID", | |
kernel_init=nn.initializers.zeros_init(), | |
bias_init=nn.initializers.zeros_init(), | |
dtype=self.dtype, | |
) | |
controlnet_down_blocks.append(controlnet_block) | |
self.down_blocks = down_blocks | |
self.controlnet_down_blocks = controlnet_down_blocks | |
# mid | |
mid_block_channel = block_out_channels[-1] | |
self.mid_block = FlaxUNetMidBlock2DCrossAttn( | |
in_channels=mid_block_channel, | |
dropout=self.dropout, | |
attn_num_head_channels=attention_head_dim[-1], | |
use_linear_projection=self.use_linear_projection, | |
dtype=self.dtype, | |
) | |
self.controlnet_mid_block = nn.Conv( | |
mid_block_channel, | |
kernel_size=(1, 1), | |
padding="VALID", | |
kernel_init=nn.initializers.zeros_init(), | |
bias_init=nn.initializers.zeros_init(), | |
dtype=self.dtype, | |
) | |
def __call__( | |
self, | |
sample, | |
timesteps, | |
encoder_hidden_states, | |
controlnet_cond, | |
conditioning_scale: float = 1.0, | |
return_dict: bool = True, | |
train: bool = False, | |
) -> Union[FlaxControlNetOutput, Tuple]: | |
r""" | |
Args: | |
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`jnp.ndarray` or `float` or `int`): timesteps | |
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states | |
controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor | |
conditioning_scale: (`float`) the scale factor for controlnet outputs | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a | |
plain tuple. | |
train (`bool`, *optional*, defaults to `False`): | |
Use deterministic functions and disable dropout when not training. | |
Returns: | |
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. | |
When returning a tuple, the first element is the sample tensor. | |
""" | |
channel_order = self.controlnet_conditioning_channel_order | |
if channel_order == "bgr": | |
controlnet_cond = jnp.flip(controlnet_cond, axis=1) | |
# 1. time | |
if not isinstance(timesteps, jnp.ndarray): | |
timesteps = jnp.array([timesteps], dtype=jnp.int32) | |
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: | |
timesteps = timesteps.astype(dtype=jnp.float32) | |
timesteps = jnp.expand_dims(timesteps, 0) | |
t_emb = self.time_proj(timesteps) | |
t_emb = self.time_embedding(t_emb) | |
# 2. pre-process | |
sample = jnp.transpose(sample, (0, 2, 3, 1)) | |
sample = self.conv_in(sample) | |
controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1)) | |
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
sample += controlnet_cond | |
# 3. down | |
down_block_res_samples = (sample,) | |
for down_block in self.down_blocks: | |
if isinstance(down_block, FlaxCrossAttnDownBlock2D): | |
sample, res_samples = down_block( | |
sample, t_emb, encoder_hidden_states, deterministic=not train | |
) | |
else: | |
sample, res_samples = down_block(sample, t_emb, deterministic=not train) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block( | |
sample, t_emb, encoder_hidden_states, deterministic=not train | |
) | |
# 5. contronet blocks | |
controlnet_down_block_res_samples = () | |
for down_block_res_sample, controlnet_block in zip( | |
down_block_res_samples, self.controlnet_down_blocks | |
): | |
down_block_res_sample = controlnet_block(down_block_res_sample) | |
controlnet_down_block_res_samples += (down_block_res_sample,) | |
down_block_res_samples = controlnet_down_block_res_samples | |
mid_block_res_sample = self.controlnet_mid_block(sample) | |
# 6. scaling | |
down_block_res_samples = [ | |
sample * conditioning_scale for sample in down_block_res_samples | |
] | |
mid_block_res_sample *= conditioning_scale | |
if not return_dict: | |
return (down_block_res_samples, mid_block_res_sample) | |
return FlaxControlNetOutput( | |
down_block_res_samples=down_block_res_samples, | |
mid_block_res_sample=mid_block_res_sample, | |
) | |